transformer中的token理解
时间: 2023-06-05 17:47:21 浏览: 657
Transformer中的token是指输入序列中的每个单词或符号,它们被编码成向量形式并输入到模型中进行处理。在Transformer中,每个token都有一个对应的位置编码,用于表示其在输入序列中的位置信息。这种编码方式可以帮助模型更好地理解输入序列中的语义和结构信息,从而提高模型的性能。在自然语言处理任务中,token是模型输入的基本单位,它的质量和数量对模型的性能有着重要的影响。
相关问题
transformer token
在Transformer模型中,token是指输入序列中的每个词语或图像中的每个图像块。在NLP中,每个单词被视为一个token,并且通常还有一个特殊的token称为CLS,用于标注句子的语义。在CV中,图像被切割成不重叠的patch序列,每个patch也被视为一个token。\[1\]\[3\]
在Transformer模型中,tokenization是指将文本或图像划分为不同的token。这些token可以是单词、图像块或其他形式的输入单元。\[1\]
在Transformer模型中,embedding层用于将token转化为向量表示。这些向量表示被称为word-embedding,它们使用浮点型的稠密矩阵表示token。每个token的向量表示具有不同的维度,可以是100、256、300等等。这些向量的值是超参数,初始时是随机生成的,并在训练过程中进行学习。通过将文本或句子转化为向量表示,可以更好地表示和处理文本数据。\[1\]
在Transformer模型中,还有两个重要的概念是cls_token和Positional Encoding。cls_token是在输入序列的首位置添加的特殊token,用于对所有的token进行信息汇聚,以用于后续的分类任务。Positional Encoding用于为输入序列中的每个token添加位置信息,以帮助模型捕捉序列中的顺序关系。\[2\]
总结起来,Transformer模型中的token是指输入序列中的每个词语或图像中的每个图像块。它们经过tokenization分割,并通过embedding层转化为向量表示。在NLP中,还有一个特殊的token称为CLS,用于标注句子的语义。在CV中,图像被切割成不重叠的patch序列,每个patch也被视为一个token。同时,还有cls_token和Positional Encoding用于信息汇聚和位置编码。\[1\]\[2\]\[3\]
#### 引用[.reference_title]
- *1* [Transformer超详细整理](https://blog.csdn.net/Sakura_day/article/details/118341728)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* [Transformer](https://blog.csdn.net/weixin_41677138/article/details/127137986)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item]
- *3* [transform中的token理解(单词或词语的标记)](https://blog.csdn.net/weixin_43135178/article/details/118877976)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
transformer token 视觉
Transformer token在视觉Transformer中起着重要的作用。在华为联合北大、悉尼大学的综述中,提到了Transformers in Vision: A Survey这篇文章,该文章总结了视觉Transformer的最新研究进展。在这些研究中,transformer token通常被用来表示整个图像的全局信息,以便在模型中进行信息交流和整合。
除此之外,还有一种名为CvT的Hierarchical Vision Transformer,它逐渐汇集视觉标记以减少计算成本。这种方法通过逐层的池化操作,将原始的视觉标记逐渐减少,以降低计算复杂度。
对于想要深入了解视觉Transformer原理和代码的人来说,有一篇长文可以帮助入门,它详细介绍了视觉Transformer的原理和代码实现。通过阅读这篇技术综述,可以更好地理解和应用视觉Transformer。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [transformer与视觉](https://blog.csdn.net/xys430381_1/article/details/109151182)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文