class ImageTransformerModel(nn.Module): def init(self): super().init() self._initial = nn.Sequential( nn.Conv2d(3, 32, kernel_size=9, stride=1, padding=4, padding_mode='reflect'), nn.InstanceNorm2d(32, affine=True), nn.ReLU(inplace=True), ) self._down_blocks = nn.Sequential( DownBlock(32, 64, kernel_size=3), DownBlock(64, 128, kernel_size=3), ) self._residual_blocks = nn.Sequential( *[ResidualBlock(128, kernel_size=3) for _ in range(5)] ) self._up_blocks = nn.Sequential( UpBlock(128, 64, kernel_size=3), UpBlock(64, 32, kernel_size=3), ) self._final = nn.Conv2d(32, 3, kernel_size=9, stride=1, padding=4, padding_mode='reflect')
时间: 2023-09-15 16:21:34 浏览: 121
这是一个用于图像转换的神经网络模型,包含了卷积层、实例归一化层、残差块、上采样块等不同类型的层。具体来说,该模型包含以下几个部分:
1. 输入层:输入图像的大小为 3(RGB 三通道)。
2. 初始层:使用一个卷积层将输入图像转换为 32 个特征图。然后应用实例归一化层和 ReLU 激活函数。
3. 下采样块:包含两个下采样层,分别将特征图从 32 增加到 64,再从 64 增加到 128。
4. 残差块:包含 5 个残差块,每个残差块包括两个卷积层和一个跳跃连接。
5. 上采样块:包含两个上采样层,将特征图从 128 减少到 64,再从 64 减少到 32。
6. 输出层:最后使用一个卷积层将特征图转换为 3 个通道的输出图像。
总体来说,这个模型可以将一张输入图像转换为一张新的风格化图像。
相关问题
class FuturePrediction(torch.nn.Module): def __init__(self, in_channels, latent_dim, n_gru_blocks=3, n_res_layers=3): super().__init__() self.n_gru_blocks = n_gru_blocks # Convolutional recurrent model with z_t as an initial hidden state and inputs the sample # from the probabilistic model. The architecture of the model is: # [Spatial GRU - [Bottleneck] x n_res_layers] x n_gru_blocks self.spatial_grus = [] self.res_blocks = [] for i in range(self.n_gru_blocks): gru_in_channels = latent_dim if i == 0 else in_channels self.spatial_grus.append(SpatialGRU(gru_in_channels, in_channels)) self.res_blocks.append(torch.nn.Sequential(*[Bottleneck(in_channels) for _ in range(n_res_layers)])) self.spatial_grus = torch.nn.ModuleList(self.spatial_grus) self.res_blocks = torch.nn.ModuleList(self.res_blocks) def forward(self, x, hidden_state): # x has shape (b, n_future, c, h, w), hidden_state (b, c, h, w) for i in range(self.n_gru_blocks): x = self.spatial_grus[i](x, hidden_state, flow=None) b, n_future, c, h, w = x.shape x = self.res_blocks[i](x.view(b * n_future, c, h, w)) x = x.view(b, n_future, c, h, w) return x是什么意思?
这是一个基于卷积循环神经网络的模型,用于进行未来预测。该模型包括若干个 SpatialGRU 模块和若干个 Bottleneck 模块,可以接受输入 x 和初始隐藏状态 hidden_state,输出预测结果 x。其中,x 的形状为 (b, n_future, c, h, w),表示批次大小为 b,未来预测数为 n_future,通道数为 c,高度为 h,宽度为 w;hidden_state 的形状为 (b, c, h, w),表示批次大小为 b,通道数为 c,高度为 h,宽度为 w。在 forward 方法中,会循环执行若干次 SpatialGRU 和 Bottleneck 模块,最终输出预测结果 x。
阅读全文