python实现resnet50网络结构的代码
时间: 2023-06-07 15:10:20 浏览: 184
以下是 Python 实现 ResNet50 网络结构的代码:
```
import tensorflow as tf
def conv_layer(inputs, filters, kernel_size, strides):
return tf.layers.conv2d(inputs=inputs,
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding='same',
kernel_initializer=tf.contrib.layers.xavier_initializer())
def identity_block(inputs, filters):
F1, F2, F3 = filters
X_shortcut = inputs
X = conv_layer(inputs, filters=F1, kernel_size=1, strides=1)
X = tf.layers.batch_normalization(X)
X = tf.nn.relu(X)
X = conv_layer(X, filters=F2, kernel_size=3, strides=1)
X = tf.layers.batch_normalization(X)
X = tf.nn.relu(X)
X = conv_layer(X, filters=F3, kernel_size=1, strides=1)
X = tf.layers.batch_normalization(X)
X = tf.add(X, X_shortcut)
X = tf.nn.relu(X)
return X
def convolutional_block(inputs, filters, strides):
F1, F2, F3 = filters
X_shortcut = inputs
X = conv_layer(inputs, filters=F1, kernel_size=1, strides=strides)
X = tf.layers.batch_normalization(X)
X = tf.nn.relu(X)
X = conv_layer(X, filters=F2, kernel_size=3, strides=1)
X = tf.layers.batch_normalization(X)
X = tf.nn.relu(X)
X = conv_layer(X, filters=F3, kernel_size=1, strides=1)
X = tf.layers.batch_normalization(X)
X_shortcut = conv_layer(X_shortcut, filters=F3, kernel_size=1, strides=strides)
X_shortcut = tf.layers.batch_normalization(X_shortcut)
X = tf.add(X, X_shortcut)
X = tf.nn.relu(X)
return X
def ResNet50(inputs):
X = conv_layer(inputs, filters=64, kernel_size=7, strides=2)
X = tf.layers.batch_normalization(X)
X = tf.nn.relu(X)
X = tf.layers.max_pooling2d(X, pool_size=3, strides=2, padding='same')
X = convolutional_block(X, filters=[64, 64, 256], strides=1)
X = identity_block(X, filters=[64, 64, 256])
X = identity_block(X, filters=[64, 64, 256])
X = convolutional_block(X, filters=[128, 128, 512], strides=2)
X = identity_block(X, filters=[128, 128, 512])
X = identity_block(X, filters=[128, 128, 512])
X = identity_block(X, filters=[128, 128, 512])
X = convolutional_block(X, filters=[256, 256, 1024], strides=2)
X = identity_block(X, filters=[256, 256, 1024])
X = identity_block(X, filters=[256, 256, 1024])
X = identity_block(X, filters=[256, 256, 1024])
X = identity_block(X, filters=[256, 256, 1024])
X = identity_block(X, filters=[256, 256, 1024])
X = convolutional_block(X, filters=[512, 512, 2048], strides=2)
X = identity_block(X, filters=[512, 512, 2048])
X = identity_block(X, filters=[512, 512, 2048])
X = tf.layers.average_pooling2d(X, pool_size=7, strides=1, padding='valid')
X = tf.layers.flatten(X)
X = tf.layers.dense(X, units=1000, activation=None, kernel_initializer=tf.contrib.layers.xavier_initializer())
return X
inputs = tf.placeholder(tf.float32, [None, 224, 224, 3])
logits = ResNet50(inputs)
predictions = tf.nn.softmax(logits)
```
阅读全文