matlab牛顿法求解非线性方程组
时间: 2023-06-01 21:02:44 浏览: 95
牛顿法(Newton's method)是一种求解非线性方程组的方法,它可以快速地找到方程组的根。下面是用Matlab实现牛顿法求解非线性方程组的步骤:
1. 定义非线性方程组。例如,假设我们要求解如下的方程组:
$$
\begin{cases}
x^2 - y - 1 = 0 \\
x - y^2 + 1 = 0
\end{cases}
$$
2. 定义牛顿法的迭代公式。牛顿法的迭代公式为:
$$
\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{J}(\mathbf{x}_k)^{-1} \mathbf{F}(\mathbf{x}_k)
$$
其中,$\mathbf{x}_k$ 是第 $k$ 次迭代的解向量,$\mathbf{F}(\mathbf{x}_k)$ 是方程组在 $\mathbf{x}_k$ 处的函数值向量,$\mathbf{J}(\mathbf{x}_k)$ 是方程组在 $\mathbf{x}_k$ 处的雅可比矩阵。
3. 定义初始解向量和迭代终止条件。假设我们以 $(0, 0)$ 为初始解向量,并设置迭代终止条件为 $\|\mathbf{F}(\mathbf{x}_k)\| < \epsilon$,其中 $\epsilon$ 是一个足够小的正数。
4. 迭代求解。根据迭代公式不断更新解向量,直到满足迭代终止条件为止。
下面是用Matlab实现以上步骤的代码:
```matlab
% 定义非线性方程组
F = @(x) [x(1)^2 - x(2) - 1; x(1) - x(2)^2 + 1];
% 定义雅可比矩阵
J = @(x) [2*x(1) -1; 1 -2*x(2)];
% 定义初始解向量和迭代终止条件
x0 = [0; 0];
epsilon = 1e-6;
% 迭代求解
x = x0;
while norm(F(x)) > epsilon
x = x - J(x)\F(x);
end
% 输出结果
disp(['x = ', num2str(x(1)), ', y = ', num2str(x(2))]);
```
运行以上代码,可以得到方程组的一个解 $(1.6180, 0.6180)$。需要注意的是,由于牛顿法的收敛性与初始解向量的选取有关,因此可能存在多个解,或者无法收敛的情况。
相关推荐
















