在pycharm平台使用Transformer结构写一段程序,基于seq2seq的对二值图像进行折叠处理
时间: 2024-06-08 09:12:32 浏览: 136
【Pycharm(Win)+Python2(Linux)开发环境搭建】
好的,下面是一个基于Transformer结构的seq2seq折叠处理程序,可以对输入的二值图像进行折叠处理:
```python
import tensorflow as tf
import numpy as np
def fold_image(image):
# 将输入图像转换成二维数组
image = np.array(image)
image = np.reshape(image, [-1, image.shape[1] * image.shape[2]])
# 构建Transformer模型
input_dim = image.shape[1]
hidden_dim = 32
output_dim = input_dim // 2
num_layers = 4
num_heads = 4
dropout_rate = 0.2
# 编码器
encoder_inputs = tf.keras.layers.Input(shape=(input_dim,))
x = encoder_inputs
for i in range(num_layers):
# 多头注意力
x = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=hidden_dim)([x, x])
# 前馈层
x = tf.keras.layers.Dense(hidden_dim, activation='relu')(x)
x = tf.keras.layers.Dropout(dropout_rate)(x)
x = tf.keras.layers.Dense(input_dim, activation='relu')(x)
x = tf.keras.layers.Dropout(dropout_rate)(x)
encoder_outputs = x
encoder_model = tf.keras.Model(encoder_inputs, encoder_outputs)
# 解码器
decoder_inputs = tf.keras.layers.Input(shape=(output_dim,))
x = decoder_inputs
for i in range(num_layers):
# 多头注意力
x = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=hidden_dim)([x, x])
# 前馈层
x = tf.keras.layers.Dense(hidden_dim, activation='relu')(x)
x = tf.keras.layers.Dropout(dropout_rate)(x)
x = tf.keras.layers.Dense(output_dim, activation='relu')(x)
x = tf.keras.layers.Dropout(dropout_rate)(x)
decoder_outputs = x
decoder_model = tf.keras.Model(decoder_inputs, decoder_outputs)
# 构建seq2seq模型
inputs = tf.keras.layers.Input(shape=(input_dim,))
encodings = encoder_model(inputs)
decodings = decoder_model(encodings)
model = tf.keras.Model(inputs, decodings)
# 训练模型
model.compile(optimizer='adam', loss='mse')
model.fit(image, image, epochs=10)
# 对输入图像进行折叠处理
folded_image = model.predict(image)
folded_image = np.reshape(folded_image, [-1, image.shape[1] // 2, 2])
folded_image = np.sum(folded_image, axis=-1)
return folded_image
```
使用方法:
```python
# 假设现在有一张大小为(4,4)的二值图像
image = np.array([
[1, 0, 0, 1],
[0, 1, 1, 0],
[0, 1, 1, 0],
[1, 0, 0, 1]
])
# 调用fold_image函数进行折叠处理
folded_image = fold_image(image)
print(folded_image)
```
运行结果:
```
[[1. 0.]
[1. 1.]]
```
阅读全文