生成堆叠降噪自编码器的python代码
时间: 2023-12-15 20:58:01 浏览: 81
以下是一个简单的堆叠降噪自编码器的Python代码示例:
```python
import numpy as np
import tensorflow as tf
# 定义堆叠降噪自编码器类
class StackedDenoisingAutoencoder():
def __init__(self, input_size, hidden_sizes):
self.input_size = input_size
self.hidden_sizes = hidden_sizes
self.autoencoders = []
# 创建所有自编码器
for i in range(len(hidden_sizes)):
if i == 0:
input_shape = input_size
else:
input_shape = hidden_sizes[i-1]
autoencoder = Autoencoder(input_shape, hidden_sizes[i])
self.autoencoders.append(autoencoder)
# 训练所有自编码器
def train(self, X, noise_factor=0.2, learning_rate=0.1, batch_size=128, num_epochs=100):
for i in range(len(self.autoencoders)):
print("Training autoencoder #{}...".format(i+1))
# 添加噪音
X_noisy = X + noise_factor * np.random.randn(*X.shape)
# 训练自编码器
self.autoencoders[i].train(X_noisy, learning_rate, batch_size, num_epochs)
# 获取编码器输出(隐藏层)
encoder_output = self.autoencoders[i].get_encoder_output(X)
# 更新输入数据
X = encoder_output
# 获取编码器输出
def get_encoder_output(self, X):
for i in range(len(self.autoencoders)):
encoder_output = self.autoencoders[i].get_encoder_output(X)
X = encoder_output
return encoder_output
# 定义自编码器类
class Autoencoder():
def __init__(self, input_size, hidden_size):
self.input_size = input_size
self.hidden_size = hidden_size
self.weights = {}
self.biases = {}
# 初始化权重和偏差
self.weights['encoder'] = tf.Variable(tf.random_normal([input_size, hidden_size]))
self.biases['encoder'] = tf.Variable(tf.random_normal([hidden_size]))
self.weights['decoder'] = tf.Variable(tf.random_normal([hidden_size, input_size]))
self.biases['decoder'] = tf.Variable(tf.random_normal([input_size]))
# 定义输入和输出占位符
self.input = tf.placeholder(tf.float32, [None, input_size])
self.encoded = tf.matmul(self.input + 0.3 * tf.random_normal(tf.shape(self.input)), self.weights['encoder']) + self.biases['encoder']
self.decoded = tf.matmul(self.encoded, self.weights['decoder']) + self.biases['decoder']
# 定义损失函数和优化器
self.loss = tf.reduce_mean(tf.square(self.input - self.decoded))
self.optimizer = tf.train.AdamOptimizer().minimize(self.loss)
# 初始化Tensorflow变量
init = tf.global_variables_initializer()
self.sess = tf.Session()
self.sess.run(init)
# 训练自编码器
def train(self, X, learning_rate, batch_size, num_epochs):
num_batches = X.shape[0] // batch_size
for epoch in range(num_epochs):
for i in range(num_batches):
batch = X[i*batch_size:(i+1)*batch_size]
self.sess.run(self.optimizer, feed_dict={self.input: batch})
# 获取编码器输出(隐藏层)
def get_encoder_output(self, X):
return self.sess.run(self.encoded, feed_dict={self.input: X})
```
这是一个简单的实现,仅供参考。您可以根据自己的需求进行修改和优化。
阅读全文