python opencv设置视频长宽
时间: 2023-10-16 09:07:06 浏览: 194
可以使用cv2库中的VideoCapture函数来打开视频文件,并使用set函数设置视频的宽度和高度。例如,下面的代码将视频的宽度设置为640,高度设置为480:
```
import cv2
cap = cv2.VideoCapture('video.mp4')
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
```
请注意,设置视频的宽度和高度可能会影响视频的质量和运行速度。
相关问题
输入视频路径获取视频长宽python opencv
在Python中,使用OpenCV库可以很容易地获取视频文件的长度(帧数)和每一帧的宽度和高度。以下是一个简单的例子:
```python
import cv2
def get_video_info(video_path):
# 读取视频
cap = cv2.VideoCapture(video_path)
# 检查是否成功打开
if not cap.isOpened():
print(f"无法打开视频文件: {video_path}")
return None
# 获取视频的基本信息
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # 帧宽
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # 帧高
fps = cap.get(cv2.CAP_PROP_FPS) # 帧率
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # 总帧数
# 关闭视频流
cap.release()
return width, height, fps, frame_count
# 示例
video_path = 'path_to_your_video.mp4'
width, height, fps, frames = get_video_info(video_path)
if width and height:
print(f"Video Information: Width: {width}, Height: {height}, FPS: {fps}, Total Frames: {frames}")
python opencv 获取轮廓朝向
要获取轮廓的朝向,可以使用OpenCV中的`cv2.minAreaRect()`函数来计算轮廓的最小外接矩形,进而得到矩形的中心点坐标和长宽以及旋转角度信息。具体步骤如下:
1. 读取图像并转换为灰度图像。
```python
import cv2
img = cv2.imread('image.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
```
2. 进行二值化处理。
```python
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
```
3. 查找轮廓。
```python
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
```
4. 遍历轮廓,获取最小外接矩形信息。
```python
for cnt in contours:
rect = cv2.minAreaRect(cnt)
center, size, angle = rect
# center: 矩形中心点坐标 (x, y)
# size: 矩形长宽 (w, h)
# angle: 矩形旋转角度
```
通过上述步骤,可以获取每个轮廓的最小外接矩形信息,从而得到轮廓的朝向信息。
阅读全文
相关推荐















