将以下linuxC++代码封装成一个宏定义,{rapidjson::Document doc; doc.SetObject(); auto allocator = doc.GetAllocator(); doc.AddMember("filename", __FILE__, allocator); ... rapidjson::StringBuffer jsonbuffer; rapidjson::Writer<rapidjson::StringBuffer> writer(jsonbuffer); doc.Accept(writer); JSONLOG(jsonbuffer.GetString());}
时间: 2024-03-05 22:49:25 浏览: 89
可以封装成如下宏定义:
```
#define JSONLOG(msg) { \
rapidjson::Document doc; \
doc.SetObject(); \
auto allocator = doc.GetAllocator(); \
doc.AddMember("filename", __FILE__, allocator); \
doc.AddMember("message", msg, allocator); \
rapidjson::StringBuffer jsonbuffer; \
rapidjson::Writer<rapidjson::StringBuffer> writer(jsonbuffer); \
doc.Accept(writer); \
std::cout << jsonbuffer.GetString() << std::endl; \
}
```
使用时,可以像这样调用:
```
JSONLOG("Hello World!");
```
该宏定义将传入的消息文本转化为 JSON 格式,并输出到控制台。其中,"filename" 字段记录了当前文件名,"message" 字段则记录了传入的消息文本。
相关问题
优化代码class MemoryManager: def init(self, allocator): self.allocator = allocator def allocate(self, process, request_size): memory_view = self.allocator.memory_view() block_start = None for i, block in enumerate(memory_view): if block is None: if block_start is None: block_start = i if i - block_start + 1 == request_size: self.allocator.allocate_memory(block_start, request_size, process) return block_start else: block_start = None return None
在这个代码中,可以考虑将 `enumerate(memory_view)` 替换为 `enumerate(self.allocator.get_free_blocks(request_size))` 来避免遍历整个内存块。这里假设 `get_free_blocks` 方法会返回所有可以容纳请求大小的内存块的起始位置,这个方法可以被 Allocator 类实现。
除此之外,可以使用列表推导式来进一步简化代码:
```
class MemoryManager:
def __init__(self, allocator):
self.allocator = allocator
def allocate(self, process, request_size):
block_start = next(iter(self.allocator.get_free_blocks(request_size)), None)
if block_start is not None:
self.allocator.allocate_memory(block_start, request_size, process)
return block_start
```
在这个优化版本中,使用了 `next` 函数来获取第一个可用的内存块的起始位置,如果没有可用的内存块则返回 `None`。同时,使用了列表推导式来替换了循环语句,使得代码更加简洁易懂。
优化代码优化class MemoryManager: def init(self, allocator): self.allocator = allocator def allocate(self, process, request_size): memory_view = self.allocator.memory_view() block_start = None for i, block in enumerate(memory_view): if block is None: if block_start is None: block_start = i if i - block_start + 1 == request_size: self.allocator.allocate_memory(block_start, request_size, process) return block_start else: block_start = None return None
可以考虑对循环进行优化,避免无用的迭代和条件判断。
```
class MemoryManager:
def __init__(self, allocator):
self.allocator = allocator
def allocate(self, process, request_size):
memory_view = self.allocator.memory_view()
block_start = None
for i, block in enumerate(memory_view):
if block is None:
if block_start is None:
block_start = i
if i - block_start + 1 == request_size:
self.allocator.allocate_memory(block_start, request_size, process)
return block_start
else:
block_start = None
return None
```
在这个优化版本中,当找到一个可用的内存块时,只需要检查是否满足请求的大小,如果满足则立即进行分配并返回结果;否则继续搜索下一个内存块。这样可以避免不必要的迭代和条件判断。
阅读全文