优化class MemoryManager: def __init__(self, allocator): self.allocator = allocator self.free_blocks = [(0, allocator)] def allocate(self, process, request_size): memory_view = self.allocator.memory_view() block_start = None for i in range(len(memory_view)): if memory_view[i] is None: if block_start is None: block_start = i if i - block_start + 1 == request_size: for j in range(block_start, i + 1): memory_view = list(memory_view) memory_view[j] = process self.allocator.allocate_memory(block_start, request_size, process) # 调用分配函数 return memory_view else: block_start = None return None
时间: 2024-02-10 10:16:08 浏览: 147
memory_allocator-master.zip
这段代码中可以进行的优化有:
1. 使用列表推导式代替 for 循环
```
memory_view = [memory_view[i] if memory_view[i] is not None else process for i in range(len(memory_view))]
```
2. 避免重复的列表转换
将 `memory_view` 转换为列表之后,又在内部循环中进行了多次修改,最后再次转换为元组。这样的重复转换会影响性能,可以考虑在函数开始时将 `memory_view` 转换为列表,并在分配完成后再次转换为元组。
3. 减少内部循环次数
可以将循环次数从整个内存块的长度缩小到仅遍历空闲块的列表 `self.free_blocks` 的长度,这样可以减少循环次数。
综上所述,可以对代码进行如下优化:
```
class MemoryManager:
def __init__(self, allocator):
self.allocator = allocator
self.free_blocks = [(0, allocator)]
def allocate(self, process, request_size):
memory_view = list(self.allocator.memory_view())
for start, end in self.free_blocks:
for i in range(start, end):
if memory_view[i] is not None:
break
else:
for i in range(start, end):
memory_view[i] = process
self.allocator.allocate_memory(start, end - start, process)
self.free_blocks.remove((start, end))
if start < end - request_size:
self.free_blocks.append((start + request_size, end))
memory_view = tuple(memory_view)
return memory_view
return None
```
阅读全文