请用Python写一个BFS的模板代码
时间: 2023-04-06 15:01:31 浏览: 150
以下是BFS的模板代码,使用Python语言实现:
```
from collections import deque
def bfs(graph, start, end):
queue = deque()
queue.append(start)
visited = set()
visited.add(start)
while queue:
node = queue.popleft()
# 处理当前节点
if node == end:
# 找到目标节点,退出循环
break
for neighbor in graph[node]:
if neighbor not in visited:
queue.append(neighbor)
visited.add(neighbor)
# 返回结果
return ...
```
其中,`graph`表示图的邻接表,`start`表示起始节点,`end`表示目标节点。在循环中,我们使用`queue`来存储待处理的节点,使用`visited`来记录已经访问过的节点。每次从队列中取出一个节点,处理它,并将它的未访问过的邻居节点加入队列中。如果找到了目标节点,就退出循环,返回结果。
相关问题
请用Python写一个BFS的模板代码,并在此基础上求解八皇后问题
以下是BFS的模板代码:
```
from collections import deque
def bfs(start, target):
queue = deque()
queue.append(start)
visited = set()
visited.add(start)
while queue:
node = queue.popleft()
# 如果找到目标状态,返回结果
if node == target:
return node
# 扩展节点
for next_node in expand(node):
if next_node not in visited:
queue.append(next_node)
visited.add(next_node)
# 如果搜索完所有节点都没有找到目标状态,返回None
return None
```
八皇后问题是指在8×8的国际象棋棋盘上放置8个皇后,使得任意两个皇后都不能在同一行、同一列或同一斜线上。以下是基于BFS的八皇后问题求解代码:
```
def expand(state):
# 扩展状态,生成下一层所有可能的状态
next_states = []
for i in range(8):
for j in range(8):
if state[i] == -1:
# 如果该行还没有皇后,尝试在该位置放置皇后
new_state = state[:]
new_state[i] = j
next_states.append(new_state)
elif j == state[i]:
# 如果该位置已经有皇后,跳过
continue
elif i - j == state[i] - state[j] or i + j == state[i] + state[j]:
# 如果该位置在同一斜线上,跳过
continue
else:
# 否则在该位置放置皇后
new_state = state[:]
new_state[i] = j
next_states.append(new_state)
return next_states
def eight_queens_bfs():
# 初始状态为8个皇后都未放置
start = [-1] * 8
# 目标状态为8个皇后都已放置
target = [0, 4, 7, 5, 2, 6, 1, 3]
# 调用BFS求解
result = bfs(start, target)
# 输出结果
if result is None:
print("无解")
else:
print(result)
eight_queens_bfs()
```
请用Python写一个BFS的模板代码,并在此基础上求解八皇后总数问题
以下是BFS的模板代码:
```
from collections import deque
def bfs(start, target):
queue = deque()
queue.append(start)
visited = set()
visited.add(start)
step = 0
while queue:
size = len(queue)
for i in range(size):
cur = queue.popleft()
if cur == target:
return step
for next_node in cur.children():
if next_node not in visited:
queue.append(next_node)
visited.add(next_node)
step += 1
```
八皇后问题是指在8×8的国际象棋棋盘上放置八个皇后,使得任意两个皇后都不能在同一行、同一列或同一斜线上。求解八皇后问题的总数可以使用回溯算法,以下是代码:
```
def totalNQueens(n):
def backtrack(row, cols, diag1, diag2):
if row == n:
return 1
else:
count = 0
for col in range(n):
if col in cols or row+col in diag1 or row-col in diag2:
continue
cols.add(col)
diag1.add(row+col)
diag2.add(row-col)
count += backtrack(row+1, cols, diag1, diag2)
cols.remove(col)
diag1.remove(row+col)
diag2.remove(row-col)
return count
return backtrack(0, set(), set(), set())
```
阅读全文
相关推荐














