假定要在⽹络上传送1.5MB的⽂件。设分组⻓度为1KB,往返时间RTT=80ms。传送数据之前还需要有建⽴TCP连 接的时间,这时间是2×RTT=160ms。 数据长度怎么算

时间: 2024-04-01 15:36:00 浏览: 42
在这个问题中,我们需要先计算分组的数量和总的数据长度。 首先,将 1.5MB 的文件转换为比特数,即:1.5MB * 1024 * 1024 * 8 = 12,582,912 bits 然后,每个分组的长度为 1KB,即:1KB * 8 = 8,192 bits 因此,分组的数量为:12,582,912 / 8,192 = 1,536 接下来,需要考虑往返时间 RTT 和 TCP 连接建立时间。根据题目描述,RTT=80ms,建立连接需要 2*RTT=160ms。 因此,总的传输时间为:1,536 * (80 + 80) + 160 = 245,760ms = 245.76s 最后,根据总的传输时间和每秒钟的传输速率,可以计算出数据长度。假设传输速率为 R,则数据长度为: 12,582,912 bits / R = 245.76s 因此,数据长度为: R = 12,582,912 bits / 245.76s = 51,168 bits/s = 6,396 bytes/s
相关问题

假定要在网络上传送1.5MB的文件。设分组长度为1KB,往返时间RTT=80ms。传送数据之前还需要有建立TCP连接的时间,这时间是2×RTT=160ms。试计算在以下几种情况下接收方收完该文件的最后一个比特所需的时间。 (1)数据发送速率为10Mb/s,数据分组可以连续发送。 (2)数据发送速率为10Mb/s,但每发送完一个分组后要等待一个RTT时间才能再发送一个分组。 (3)数据发送速率极快,可以不考虑发送数据所需的时间。但规定在每一个RTT往返时间内只能发送20个分组。 (4)数据发送速率极快,可以不考虑发送数据所需的时间。但在第一个RTT往返时间内只能发送一个分组,在第二个RTT内可发送两个分组,在第三个RTT内可发送四个分组(即23-1=22=4个分组)

好的,根据您的要求,我已经记录下了您的问题。下面是针对您的问题的解答: 首先,我需要将1.5MB转换为比特数,即12Mb。然后,我们可以根据数据发送速率和分组长度计算出每个分组的传输时间。因为分组长度为1KB,所以每个分组传输时间为8ms。此外,由于需要建立TCP连接,因此需要额外的160ms时间。 (1)数据发送速率为10Mb/s,数据分组可以连续发送。 在这种情况下,每个分组的传输时间为8ms,因此可以连续发送分组,不需要等待。因此,整个文件的传输时间为: 传输时间 = 数据传输时间 + 建立连接时间 = 数据量 / 速率 + 2 × RTT = (12Mb / 10Mb/s) + 2 × 80ms = 1.2s + 160ms = 1.36s 因此,接收方需要1.36秒的时间才能接收完该文件的最后一个比特。 (2)数据发送速率为10Mb/s,但每发送完一个分组后要等待一个RTT时间才能再发送一个分组。 在这种情况下,每个分组的传输时间为8ms,但需要等待一个RTT时间(80ms)才能发送下一个分组。因此,在发送每个分组后,需要等待(2 × 80ms)的时间,然后才能发送下一个分组。因此,整个文件的传输时间为: 传输时间 = 数据传输时间 + 建立连接时间 + 等待时间 = 数据量 / 速率 + 2 × RTT + (分组数 - 1) × 2 × RTT = (12Mb / 10Mb/s) + 2 × 80ms + (1500 - 1) × 2 × 80ms = 1.2s + 240ms + 238 × 80ms = 20.96s 因此,接收方需要20.96秒的时间才能接收完该文件的最后一个比特。 (3)数据发送速率极快,可以不考虑发送数据所需的时间。但规定在每一个RTT往返时间内只能发送20个分组。 在这种情况下,可以不考虑发送数据所需的时间。但是,规定在每个RTT往返时间内只能发送20个分组,因此需要计算分组数。每个分组的传输时间为8ms,因此在一个RTT时间内可以发送20个分组,即160KB的数据。因此,整个文件的传输时间为: 传输时间 = 数据传输时间 + 建立连接时间 + 等待时间 = 分组数 × 分组大小 / 速率 + (分组数 / 20) × 2 × RTT + 2 × RTT = 1500KB / 10Mb/s + (1500 / 20) × 2 × 80ms + 2 × 80ms = 0.15s + 240ms + 160ms = 550ms 因此,接收方需要550ms的时间才能接收完该文件的最后一个比特。 (4)数据发送速率极快,可以不考虑发送数据所需的时间。但在第一个RTT往返时间内只能发送一个分组,在第二个RTT内可发送两个分组,在第三个RTT内可发送四个分组(即23-1=22=4个分组) 在这种情况下,可以不考虑发送数据所需的时间。但是,在第一个RTT往返时间内只能发送一个分组,在第二个RTT内可发送两个分组,在第三个RTT内可发送四个分组。因此,需要计算每个RTT时间内发送的分组数。每个分组的传输时间为8ms,因此在一个RTT时间内可以发送的分组数为: 第一个RTT:1个分组 第二个RTT:2个分组 第三个RTT:4个分组 因此,在每个RTT时间内发送的分组数为7个。因此,整个文件的传输时间为: 传输时间 = 数据传输时间 + 建立连接时间 + 等待时间 = 分组数 × 分组大小 / 速率 + (分组数 / 7) × 2 × RTT + 2 × RTT = 1500KB / 10Mb/s + (1500 / 7) × 2 × 80ms + 2 × 80ms = 0.15s + 342.86ms + 160ms = 652.86ms 因此,接收方需要652.86ms的时间才能接收完该文件的最后一个比特。

假定要在网络上传送1.5 MB的文件。设分组长度为1KB,往返时间RTT=80 ms。传送数据之前还需要有建立TCP连接的时间,这时间是2×RTT=160ms。试计算在以下几种情况下接收方收完该文件的最后一个比特所需的时间。 (1)数据发送速率为10Mbit/s,数据分组可以连续发送。 (2)数据发送速率为10Mbit/s,但每发送完一个分组后要等待一个 RTT时间才能再 发送下一个分组。 (3)数据发送速率极快,可以不考虑发送数据所需的时间。但规定在每一个RTT往返 时间内只能发送20个分组。 (4)数据发送速率极快,可以不考虑发送数据所需的时间。但在第一个RTT往返时间内只能发送一个分组,在第二个RTT内可发送两个分组,在第三个RTT内可发送四个分组(即23-1=22=4个分组)(这种发送方式见教材第5章TCP的拥塞控制部分)。

ChatGPT: 对于第一个情况,接收方收完该文件的最后一个比特所需的时间为:(1.5MB / 1KB) * (1 / 10Mbit/s) + 2 * 80ms = 0.16s。 对于第二个情况,每发送完一个分组后要等待一个 RTT 时间才能再发送下一个分组,因此发送速率为 1KB / (2 * RTT) = 6.25KB/s,接收方收完该文件的最后一个比特所需的时间为:(1.5MB / 1KB) * (1 / 6.25KB/s) + 2 * 80ms = 0.48s。 对于第三个情况,每个 RTT 往返时间内只能发送 20 个分组,因此每个分组的大小为 1KB / 20 = 50B,发送速率为 50B * 20 / (2 * RTT) = 500B/s,接收方收完该文件的最后一个比特所需的时间为:(1.5MB / 50B) * (50B * 20 / (2 * RTT)) + 2 * 80ms = 0.16s。 对于第四个情况,第一个 RTT 往返时间内只能发送一个分组,第二个 RTT 内可发送两个分组,第三个 RTT 内可发送四个分组,因此发送速率为 (1 + 2 + 4) * 1KB / (3 * RTT) = 7KB/s,接收方收完该文件的最后一个比特所需的时间为:(1.5MB / 1KB) * (1 / 7KB/s) + 2 * 80ms = 0.23s。

相关推荐

最新推荐

recommend-type

STM32 RTT学习笔记(三)SPI FLASH

首先,我们要了解SPI Flash的两种型号:W25X40CL和W25Q64。它们分别具有不同的存储容量,计算方法为总位数除以8。 添加SPI Flash设备的步骤如下: 1. 使用STM32CubeMX配置工具,选择所需的外设(如SPI),分配引脚...
recommend-type

消息队列方式实现串口数据不定长接收 —- RT-thread&STM32

通常在裸机中,我们使用一个定时器来辅助串口实现串口数据不定长接收,也就是当串口接收数据时,定时器一直处于定时值(比如100ms),接收不断的把数据放入缓冲区(通常可使用数组),当串口空闲时,定时器开始计时,...
recommend-type

C++实现的俄罗斯方块游戏

一个简单的俄罗斯方块游戏的C++实现,涉及基本的游戏逻辑和控制。这个示例包括了初始化、显示、移动、旋转和消除方块等基本功能。 主要文件 main.cpp:包含主函数和游戏循环。 tetris.h:包含游戏逻辑的头文件。 tetris.cpp:包含游戏逻辑的实现文件。 运行说明 确保安装SFML库,以便进行窗口绘制和用户输入处理。
recommend-type

06二十四节气之谷雨模板.pptx

06二十四节气之谷雨模板.pptx
recommend-type

电力电子系统建模与控制入门

"该资源是关于电力电子系统建模及控制的课程介绍,包含了课程的基本信息、教材与参考书目,以及课程的主要内容和学习要求。" 电力电子系统建模及控制是电力工程领域的一个重要分支,涉及到多学科的交叉应用,如功率变换技术、电工电子技术和自动控制理论。这门课程主要讲解电力电子系统的动态模型建立方法和控制系统设计,旨在培养学生的建模和控制能力。 课程安排在每周二的第1、2节课,上课地点位于东12教401室。教材采用了徐德鸿编著的《电力电子系统建模及控制》,同时推荐了几本参考书,包括朱桂萍的《电力电子电路的计算机仿真》、Jai P. Agrawal的《Powerelectronicsystems theory and design》以及Robert W. Erickson的《Fundamentals of Power Electronics》。 课程内容涵盖了从绪论到具体电力电子变换器的建模与控制,如DC/DC变换器的动态建模、电流断续模式下的建模、电流峰值控制,以及反馈控制设计。还包括三相功率变换器的动态模型、空间矢量调制技术、逆变器的建模与控制,以及DC/DC和逆变器并联系统的动态模型和均流控制。学习这门课程的学生被要求事先预习,并尝试对书本内容进行仿真模拟,以加深理解。 电力电子技术在20世纪的众多科技成果中扮演了关键角色,广泛应用于各个领域,如电气化、汽车、通信、国防等。课程通过列举各种电力电子装置的应用实例,如直流开关电源、逆变电源、静止无功补偿装置等,强调了其在有功电源、无功电源和传动装置中的重要地位,进一步凸显了电力电子系统建模与控制技术的实用性。 学习这门课程,学生将深入理解电力电子系统的内部工作机制,掌握动态模型建立的方法,以及如何设计有效的控制系统,为实际工程应用打下坚实基础。通过仿真练习,学生可以增强解决实际问题的能力,从而在未来的工程实践中更好地应用电力电子技术。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

图像写入的陷阱:imwrite函数的潜在风险和规避策略,规避图像写入风险,保障数据安全

![图像写入的陷阱:imwrite函数的潜在风险和规避策略,规避图像写入风险,保障数据安全](https://static-aliyun-doc.oss-accelerate.aliyuncs.com/assets/img/zh-CN/2275688951/p86862.png) # 1. 图像写入的基本原理与陷阱 图像写入是计算机视觉和图像处理中一项基本操作,它将图像数据从内存保存到文件中。图像写入过程涉及将图像数据转换为特定文件格式,并将其写入磁盘。 在图像写入过程中,存在一些潜在陷阱,可能会导致写入失败或图像质量下降。这些陷阱包括: - **数据类型不匹配:**图像数据可能与目标文
recommend-type

protobuf-5.27.2 交叉编译

protobuf(Protocol Buffers)是一个由Google开发的轻量级、高效的序列化数据格式,用于在各种语言之间传输结构化的数据。版本5.27.2是一个较新的稳定版本,支持跨平台编译,使得可以在不同的架构和操作系统上构建和使用protobuf库。 交叉编译是指在一个平台上(通常为开发机)编译生成目标平台的可执行文件或库。对于protobuf的交叉编译,通常需要按照以下步骤操作: 1. 安装必要的工具:在源码目录下,你需要安装适合你的目标平台的C++编译器和相关工具链。 2. 配置Makefile或CMakeLists.txt:在protobuf的源码目录中,通常有一个CMa
recommend-type

SQL数据库基础入门:发展历程与关键概念

本文档深入介绍了SQL数据库的基础知识,首先从数据库的定义出发,强调其作为数据管理工具的重要性,减轻了开发人员的数据处理负担。数据库的核心概念是"万物皆关系",即使在面向对象编程中也有明显区分。文档讲述了数据库的发展历程,从早期的层次化和网状数据库到关系型数据库的兴起,如Oracle的里程碑式论文和拉里·埃里森推动的关系数据库商业化。Oracle的成功带动了全球范围内的数据库竞争,最终催生了SQL这一通用的数据库操作语言,统一了标准,使得关系型数据库成为主流。 接着,文档详细解释了数据库系统的构成,包括数据库本身(存储相关数据的集合)、数据库管理系统(DBMS,负责数据管理和操作的软件),以及数据库管理员(DBA,负责维护和管理整个系统)和用户应用程序(如Microsoft的SSMS)。这些组成部分协同工作,确保数据的有效管理和高效处理。 数据库系统的基本要求包括数据的独立性,即数据和程序的解耦,有助于快速开发和降低成本;减少冗余数据,提高数据共享性,以提高效率;以及系统的稳定性和安全性。学习SQL时,要注意不同数据库软件可能存在的差异,但核心语言SQL的学习是通用的,后续再根据具体产品学习特异性。 本文档提供了一个全面的框架,涵盖了SQL数据库从基础概念、发展历程、系统架构到基本要求的方方面面,对于初学者和数据库管理员来说是一份宝贵的参考资料。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依