只获取pytorch自带的vgg19,36层的relu结果。
时间: 2024-02-03 10:11:25 浏览: 72
好的,以下是获取PyTorch自带的VGG19模型,并计算36层的ReLU结果的代码:
```python
import torch
import torch.nn as nn
import torchvision.models as models
# 获取vgg19模型
vgg19 = models.vgg19(pretrained=True)
# 提取前36层的参数
features = list(vgg19.features)[:36]
# 构建前36层的网络模型
vgg19_36 = nn.Sequential(*features)
# 设置为评估模式
vgg19_36.eval()
# 随机生成输入
input_tensor = torch.randn(1, 3, 224, 224)
# 计算36层的ReLU结果
output_tensor = vgg19_36(input_tensor)
output_tensor = nn.ReLU(inplace=True)(output_tensor)
print("输出张量形状:", output_tensor.shape)
```
其中,`vgg19.features`返回的是整个VGG19模型的前面的特征提取层,我们只需要取前36层即可;`nn.Sequential`可以将多个层组合成一个网络模型;`nn.ReLU(inplace=True)`表示在原地激活,即将结果保存在原始张量中,节省内存。运行上述代码,会输出36层的ReLU结果的张量形状。
相关问题
修改pytorch自带vgg19的输入通道数
要修改PyTorch自带的VGG19的输入通道数,需要对其进行修改。具体步骤如下:
1. 从PyTorch中导入VGG19模型:
```python
import torch
import torchvision.models as models
vgg19 = models.vgg19(pretrained=True)
```
2. 查看VGG19的结构,可以看到其输入通道数为3:
```python
print(vgg19)
```
输出:
```
VGG(
(features): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU(inplace=True)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): ReLU(inplace=True)
(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
...
```
3. 修改VGG19的输入通道数为1:
```python
import torch.nn as nn
class VGG19(nn.Module):
def __init__(self):
super(VGG19, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
...
)
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 1000),
)
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
```
4. 实例化修改后的VGG19模型:
```python
vgg19 = VGG19()
```
现在,你就可以使用修改后的VGG19模型来进行训练或预测了。
使用pytorch实现VGG19需要多少代码
使用 PyTorch 实现 VGG19 也取决于你需要实现的细节和功能,但通常来说,相对于 TensorFlow,使用 PyTorch 实现 VGG19 的代码量可能会更少一些。
以下是一个使用 PyTorch 实现 VGG19 的简单示例代码:
```
import torch.nn as nn
class VGG19(nn.Module):
def __init__(self, num_classes=1000):
super(VGG19, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
```
这个示例代码实现了一个类似的 VGG19 模型,并且使用了 PyTorch 的 nn 模块。这个模型包含了 16 个卷积层和 3 个全连接层,以及 5 个最大池化层。相对于 TensorFlow,这个示例代码的实现更加简洁,但实现的功能和细节也相对较少。如果你需要更复杂或更精细的 VGG19 模型,你也需要编写更多的代码来实现它。
阅读全文