pytorch学习率下降
时间: 2023-09-05 17:14:37 浏览: 110
pytorch动态调整学习率
PyTorch提供了多种学习率下降的方法,可以根据具体的需求选择合适的方法来降低学习率。下面是几种常用的学习率下降方法:
1. 学习率衰减(Learning Rate Decay):在训练过程中,随着训练的进行,动态地减小学习率。可以使用torch.optim.lr_scheduler模块中的StepLR、MultiStepLR、ExponentialLR等类来实现。
2. 学习率分组(Learning Rate Scheduling):将网络的不同层或参数组分别设置不同的学习率。可以使用torch.optim模块中的参数组(param_groups)来实现。
3. 基于损失函数的学习率调整:根据损失函数的变化情况调整学习率。可以使用torch.optim.lr_scheduler模块中的ReduceLROnPlateau类来实现。
4. 自适应学习率方法:根据梯度、参数等信息自适应地调整学习率。常见的方法有Adam、RMSprop等。
在PyTorch中,可以通过创建优化器(如torch.optim.SGD、torch.optim.Adam等)、设置合适的学习率和调用相应的学习率调整方法来实现学习率下降。具体使用方法可参考官方文档或相关教程。
阅读全文