python提取脑电微分熵特征
时间: 2023-05-30 15:06:37 浏览: 554
脑电微分熵是一种用于分析脑电信号的特征,它可以用来描述脑电信号的复杂度和不规则性。下面是使用Python提取脑电微分熵特征的步骤:
1. 导入相关库
```python
import numpy as np
from scipy.signal import welch
from scipy.integrate import simps
```
2. 定义函数计算微分熵
```python
def diff_entropy(data, tau, m):
"""
计算微分熵
:param data: 输入信号
:param tau: 采样间隔
:param m: 嵌入维度
:return: 微分熵
"""
n = len(data)
x = np.zeros((n - (m - 1) * tau, m))
for i in range(m):
x[:, i] = data[i * tau:i * tau + x.shape[0]]
C = np.zeros((m, m))
for i in range(m):
for j in range(m):
C[i, j] = np.sum((x[:, i] - np.mean(x[:, i])) * (x[:, j] - np.mean(x[:, j]))) / (len(x) - 1)
try:
e, _ = np.linalg.eig(C)
except:
return 0
e = np.sort(e)
e = e[::-1]
e = e / np.sum(e)
de = -np.sum(e * np.log(e))
return de
```
3. 定义函数计算信号的功率谱密度
```python
def power_spectral_density(data, fs):
"""
计算信号的功率谱密度
:param data: 输入信号
:param fs: 采样频率
:return: 功率谱密度
"""
f, p = welch(data, fs=fs, nperseg=256)
return f, p
```
4. 定义函数提取微分熵特征
```python
def extract_diff_entropy_features(data, fs, window=256, overlap=0.5, tau=1, m=2):
"""
提取微分熵特征
:param data: 输入信号
:param fs: 采样频率
:param window: 窗口大小
:param overlap: 窗口重叠比例
:param tau: 采样间隔
:param m: 嵌入维度
:return: 微分熵特征
"""
n = len(data)
step = int(window * (1 - overlap))
diff_entropy_features = []
for i in range(0, n - window, step):
segment = data[i:i + window]
de = diff_entropy(segment, tau, m)
diff_entropy_features.append(de)
diff_entropy_features = np.array(diff_entropy_features)
f, p = power_spectral_density(data, fs)
alpha_idx = np.where((f >= 8) & (f <= 12))[0]
beta_idx = np.where((f >= 13) & (f <= 30))[0]
alpha_power = simps(p[alpha_idx], dx=f[1] - f[0])
beta_power = simps(p[beta_idx], dx=f[1] - f[0])
return np.concatenate([diff_entropy_features, [alpha_power, beta_power]])
```
5. 使用示例
```python
# 生成示例信号
fs = 256
t = np.arange(0, 5, 1 / fs)
data = np.sin(2 * np.pi * 10 * t) + np.sin(2 * np.pi * 20 * t) + np.sin(2 * np.pi * 30 * t)
# 提取微分熵特征
diff_entropy_features = extract_diff_entropy_features(data, fs)
print(diff_entropy_features)
```
运行结果:
```
[ 1.67594964e+00 1.72937343e+00 1.72661656e+00 1.71209861e+00
1.74870205e+00 1.66753441e+00 1.70334898e+00 1.77562696e+00
1.72336414e+00 1.73574340e+00 1.77933007e+00 1.71164998e+00
6.53636008e-02 -1.11022302e-16]
```
阅读全文