sns.heatmap(corr_df, mask=mask, vmax=0.8, square=True, annot=True)

时间: 2023-06-25 15:02:02 浏览: 45
这段代码是用于生成一个热力图,其中: - `corr_df`是一个DataFrame类型的数据,表示要绘制热力图的数据; - `mask`是一个与`corr_df`大小相同的布尔类型的DataFrame,表示要隐藏的部分,即不想让用户看到的部分; - `vmax`表示颜色映射的最大值,即最浅的颜色对应的取值; - `square`表示是否将热力图的方格设为正方形; - `annot`表示是否在每个方格中显示数值。
相关问题

# 创建图像 grid_kws = {"width_ratios": (.9, .9, .05), "wspace": 0.2} f, (ax1, ax2, cbar_ax) = plt.subplots(1, 3, gridspec_kw=grid_kws, figsize = (18, 9)) # 定义调色板 cmap = sns.diverging_palette(0, 230, 90, 60, as_cmap=True) # 画 NotFraud 表中的各个特征间相关性热力图 # 计算上三角mask矩阵 mask1 = np.zeros_like(corr_NotFraud) indices = np.triu_indices_from(corr_NotFraud) mask1[indices] = True # 过滤空值 mask1 = mask1[1:, :-1] corr_NotFraud = corr_NotFraud.iloc[1:, :-1].copy() ax1 =sns.???(corr_NotFraud, ax = ax1, vmin = -1, vmax = 1, cmap = cmap, square = False, \ annot=True, fmt=".2f", linewidths = 0.5, mask = mask1, cbar = False) ax1.set_xticklabels(ax1.get_xticklabels(), size = 16); ax1.set_yticklabels(ax1.get_yticklabels(), size = 16); ax1.set_title('fraud=1的热力图', size = 20)

这段代码中缺少 `heatmap` 方法名,应该是 `sns.heatmap`。因此,你可以使用以下代码画 NotFraud 表中的各个特征间相关性热力图: ``` ax1 = sns.heatmap(corr_NotFraud, ax=ax1, vmin=-1, vmax=1, cmap=cmap, square=False, annot=True, fmt=".2f", linewidths=0.5, mask=mask1, cbar=False) ``` 其中,`corr_NotFraud` 是相关系数矩阵,`ax=ax1` 表示将热力图绘制在 `ax1` 坐标轴上,`vmin` 和 `vmax` 分别表示颜色映射的最小值和最大值,`cmap` 表示使用的颜色映射,`square=False` 表示关闭正方形显示模式,`annot=True` 表示在每个格子内显示数值,`fmt=".2f"` 表示显示的数值的格式,`linewidths=0.5` 表示格子之间的线宽度,`mask=mask1` 表示过滤空值,`cbar=False` 表示关闭颜色条。

import seaborn as sns sns.set() %matplotlib inline %config InlineBack.figure_format="retina" correlation = data[["Income Classification","Survey Sample (N)","Overweight","Stunting","Underweight",]].corr() mask = np.array(correlation) mask[np.tril_indices_from(mask)] = False fig,ax = plt.subplots() fig.set_size_inches(20,10) sns.heatmap(correlation,mask=mask,vmax=.8,square=True,annot=True) plt.show()

这段代码使用了Seaborn库绘制了一个热力图来展示数据的相关性。让我来解释一下您的代码: - `import seaborn as sns`:导入Seaborn库。 - `sns.set()`:设置Seaborn的默认样式。 - `%matplotlib inline`:在Jupyter Notebook中设置matplotlib图形的显示方式为内联模式,以便图形能够直接显示在Notebook中。 - `%config InlineBack.figure_format="retina"`:设置图形显示的分辨率为retina,以提高图像的清晰度。 接下来,使用`data[["Income Classification","Survey Sample (N)","Overweight","Stunting","Underweight",]].corr()`计算了数据集中指定列之间的相关系数,并将结果存储在名为`correlation`的DataFrame中。 然后,创建了一个名为`mask`的数组,用于掩盖热力图中的下三角部分。并使用`np.tril_indices_from(mask)`函数获取下三角部分的索引,并将这些索引对应的元素设置为False。 接着,创建了一个图形对象(`fig`)和一个坐标轴对象(`ax`),并使用`fig.set_size_inches(20,10)`设置图形的尺寸为20x10英寸。 然后,使用`sns.heatmap`函数绘制热力图。该函数的参数说明如下: - `correlation`:指定要绘制热力图的数据。 - `mask=mask`:指定要使用的掩码数组。 - `vmax=.8`:设置热力图的颜色映射的最大值为0.8。 - `square=True`:设置热力图的每个单元格为正方形。 - `annot=True`:在热力图中显示每个单元格的数值。 最后,使用`plt.show()`显示图形。 请确保在运行这段代码之前已经导入了必要的库,并且已经正确加载了数据。如果遇到任何错误,请提供详细的错误消息以便我能够更好地帮助您解决问题。

相关推荐

import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split # 读取训练集和测试集数据 train_data = pd.read_csv(r'C:\ADULT\Titanic\train.csv') test_data = pd.read_csv(r'C:\ADULT\Titanic\test.csv') # 统计训练集和测试集缺失值数目 print(train_data.isnull().sum()) print(test_data.isnull().sum()) # 处理 Age, Fare 和 Embarked 缺失值 most_lists = ['Age', 'Fare', 'Embarked'] for col in most_lists: train_data[col] = train_data[col].fillna(train_data[col].mode()[0]) test_data[col] = test_data[col].fillna(test_data[col].mode()[0]) # 拆分 X, Y 数据并将分类变量 one-hot 编码 y_train_data = train_data['Survived'] features = ['Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'Sex', 'Embarked'] X_train_data = pd.get_dummies(train_data[features]) X_test_data = pd.get_dummies(test_data[features]) # 合并训练集 Y 和 X 数据,并创建乘客信息分类变量 train_data_selected = pd.concat([y_train_data, X_train_data], axis=1) print(train_data_selected) cate_features = ['Pclass', 'SibSp', 'Parch', 'Sex', 'Embarked', 'Age_category', 'Fare_category'] train_data['Age_category'] = pd.cut(train_data.Fare, bins=range(0, 100, 10)).astype(str) train_data['Fare_category'] = pd.cut(train_data.Fare, bins=list(range(-20, 110, 20)) + [800]).astype(str) print(train_data) # 统计各分类变量的分布并作出可视化呈现 plt.figure(figsize=(18, 16)) plt.subplots_adjust(hspace=0.3, wspace=0.3) for i, cate_feature in enumerate(cate_features): plt.subplot(7, 2, 2 * i + 1) sns.histplot(x=cate_feature, data=train_data, stat="density") plt.xlabel(cate_feature) plt.ylabel('Density') plt.subplot(7, 2, 2 * i + 2) sns.lineplot(x=cate_feature, y='Survived', data=train_data) plt.xlabel(cate_feature) plt.ylabel('Survived') plt.show() # 绘制点状的相关系数热图 plt.figure(figsize=(12, 8)) sns.heatmap(train_data_selected.corr(), vmin=-1, vmax=1, annot=True) plt.show() sourceRow = 891 output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions}) output.head() # 保存结果 output.to_csv('gender_submission.csv', index=False) print(output) train_X, test_X, train_y, test_y = train_test_split(X_train_data, y_train_data, train_size=0.8, random_state=42) print("随机森林分类结果") y_pred_train1 = train_data.predict(train_X) y_pred_test1 = train_data.predict(test_X) accuracy_train1 = accuracy_score(train_y, y_pred_train1) accuracy_test1 = accuracy_score(test_y, y_pred_test1) print("训练集——随机森林分类器准确率为:", accuracy_train1) print("测试集——随机森林分类器准确率为:", accuracy_train1)

import pandas as pd import seaborn as sns import matplotlib.pyplot as plt data = pd.read_excel(r"D:桌面/shujukuE.xlsx", sheet_name="Sheet3") ds = pd.DataFrame(data) dataset = ds.copy() data.drop(["materials", "contain H", "contain C", "contain N", "contain P", "contain O", "contain S", "contain Te", "contain Se", "contain F", "contain Cl", "contain Br", "contain I", "jili", ], axis=1, inplace=True) 首先计算出相关系数 cor = data.corr(method='pearson') print(cor) # 输出相关系数 rc = {'font.sans-serif': 'SimHei', 'axes.unicode_minus': False} sns.set(font_scale=0.4, rc=rc) # 设置字体大小 设置热力图颜色配色 colors = "YlGnBu" # 颜色配置" color = colors.split('_') for i in color: i = i.strip() print(i) sns.heatmap(cor, annot=False, # 显示相关系数的数据 center=0.5, # 居中 fmt='.2f', # 只显示两位小数 linewidth=0, # 设置每个单元格的距离 #linecolor='blue', # 设置间距线的颜色# vmax=1.0, vmin=-0.5, # 设置数值最小值和最大值 xticklabels=True, yticklabels=True, # 显示x轴和y轴 square=True, # 每个方格都是正方形 cbar=True, # 绘制颜色条 cmap=f'{i}', # 设置热力图颜色 ) plt.xticks(fontsize=6) plt.yticks(fontsize=6) plt.savefig("D:/桌面/影响因素热力图颜色{i}.png", dpi=600) # 保存图片,分辨率为600 plt.ion() # 显示图片,这个可以方便后面自动关闭 plt.show() plt.pause(0.5)这段代码中我想把得到的相关性数据保存为Excel,应该再怎么优化代码

最新推荐

recommend-type

【图像压缩】 GUI矩阵的奇异值分解SVD灰色图像压缩【含Matlab源码 4359期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

node-v0.9.2-x86.msi

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

数字舵机控制程序流程图

以下是数字舵机控制程序的流程图: ![数字舵机控制程序流程图](https://i.imgur.com/2fgKUQs.png) 1. 初始化引脚:设置舵机控制引脚为输出模式。 2. 初始化舵机:将舵机控制引脚输出的PWM信号设置为初始值,初始化舵机的位置。 3. 接收控制信号:通过串口或者其他方式接收舵机控制信号。 4. 解析控制信号:解析接收到的控制信号,确定舵机需要转动的角度和方向。 5. 转动舵机:根据解析后的控制信号,设置舵机控制引脚输出的PWM信号的占空比,使舵机转动到目标位置。 6. 延时:为了保证舵机转动到目标位置后稳定,需要延时一段时间。 7. 返回接收控制信