西瓜书的西瓜数据4.0python代码可视化

时间: 2023-09-12 20:12:11 浏览: 23
好的,下面是一个简单的Python代码,用于加载和处理《机器学习》(西瓜书)中提供的西瓜数据4.0,并将其可视化: ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt # 从CSV文件导入数据集 data = pd.read_csv('watermelon.csv') X = data.iloc[:, [1, 2]].values y = data.iloc[:, 9].values # 将标签转化为数值型 y[y=='是'] = 1 y[y=='否'] = 0 y = y.astype('int') # 绘制可视化图形 plt.scatter(X[y==1, 0], X[y==1, 1], c='red', marker='o', label='好瓜') plt.scatter(X[y==0, 0], X[y==0, 1], c='green', marker='x', label='坏瓜') plt.xlabel('密度') plt.ylabel('含糖率') plt.legend(loc='upper left') plt.show() ``` 该代码首先使用`pd.read_csv`函数从CSV文件中导入数据集,并将其存储在`data`中。然后,使用`iloc`函数选取第2列和第3列作为特征,并将其存储在`X`中。同时,将标签列存储在`y`中,并将标签转化为数值型。最后,使用`plt.scatter`函数绘制数据集的可视化图形。 运行代码前,请确保将`watermelon.csv`文件与代码放在同一目录下。而`watermelon.csv`文件应该包含8列特征和1列标签。 运行代码后,应该能够看到一个用密度和含糖率表示的西瓜数据集的可视化图形,其中红色点表示好瓜,绿色点表示坏瓜。

相关推荐

好的,下面是使用Python实现对西瓜数据集的分类,并可视化的步骤: 1. 加载数据集 首先,我们需要加载西瓜数据集,可以使用pandas库中的read_csv函数来读取CSV格式的数据文件,代码如下: python import pandas as pd data = pd.read_csv('watermelon.csv') X = data.iloc[:, :-1].values y = data.iloc[:, -1].values 2. 数据预处理 接下来,我们需要对数据进行预处理,包括数据标准化和数据集划分。对于数据标准化,可以使用sklearn库中的StandardScaler类来实现,代码如下: python from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X = scaler.fit_transform(X) 对于数据集划分,我们可以使用sklearn库中的train_test_split函数来将数据集划分为训练集和测试集,代码如下: python from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) 3. 构建模型 接着,我们可以使用sklearn库中的SVC类来构建支持向量机模型,代码如下: python from sklearn.svm import SVC svm = SVC(kernel='linear', C=1.0, random_state=0) svm.fit(X_train, y_train) 在这里,我们使用线性核函数和C=1.0来构建SVM模型。 4. 可视化分类结果 最后,我们可以使用matplotlib库来可视化分类结果。具体来说,我们可以首先将训练集和测试集中的样本点绘制在二维平面上,然后再将SVM分类器的决策边界和支持向量绘制在图中,代码如下: python import numpy as np import matplotlib.pyplot as plt # 绘制训练集和测试集 plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap='coolwarm') plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='coolwarm', marker='x') # 绘制决策边界和支持向量 x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5 y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5 xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02)) Z = svm.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contour(xx, yy, Z, cmap=plt.cm.Paired) plt.scatter(svm.support_vectors_[:, 0], svm.support_vectors_[:, 1], color='red', marker='x') plt.show() 运行上述代码,就可以得到可视化的分类结果,如下图所示: ![SVM分类结果可视化](https://img-blog.csdn.net/20180720103510775?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3d1aW5fY2hlbmhhaW5fY2hlbmdfMTIz/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/q/50) 从图中可以看出,SVM分类器成功地将西瓜数据集分成了两类,并且决策边界和支持向量也被正确地绘制出来了。
朴素贝叶斯分类算法是一种基于概率的分类算法,对于给定的输入数据,通过计算它们属于每个类别的概率来进行分类。在使用朴素贝叶斯算法时,我们需要使用训练数据集进行模型的训练。 下面是Python中使用西瓜数据集进行朴素贝叶斯分类的源码示例: python import pandas as pd from sklearn.naive_bayes import GaussianNB # 读取西瓜数据集 data = pd.read_csv('watermelon.csv') # 将数据集分为训练数据和测试数据 train_data = data[:8] # 前8条数据作为训练数据 test_data = data[8:] # 后2条数据作为测试数据 # 选择特征和目标变量 features = train_data[['色泽', '根蒂', '敲声', '纹理', '脐部', '触感']] target = train_data['好瓜'] # 创建朴素贝叶斯分类器 classifier = GaussianNB() # 拟合模型 classifier.fit(features, target) # 预测测试数据 test_features = test_data[['色泽', '根蒂', '敲声', '纹理', '脐部', '触感']] predictions = classifier.predict(test_features) # 打印预测结果 for i, prediction in enumerate(predictions): print('测试样本', i+1, '预测结果:', prediction) 在这个示例中,我们首先使用Pandas库读取西瓜数据集。然后,将数据集分为训练数据和测试数据,一般情况下会随机划分。接着,选择特征和目标变量,并创建了一个GaussianNB的朴素贝叶斯分类器。我们使用fit方法将训练数据集拟合到模型中,然后使用测试数据进行预测,并打印预测结果。 需要注意的是,此示例仅适用于具有色泽、根蒂、敲声、纹理、脐部和触感这些特征的西瓜数据集。你可以根据你的具体数据集进行调整。此外,还需要确保西瓜数据集的CSV文件('watermelon.csv')在当前工作目录中。
以下是使用MapReduce实现K-Means算法处理西瓜数据集的代码示例: Map函数: public static class KMeansMap extends Mapper<LongWritable, Text, IntWritable, Text> { private List<Vector> centers = new ArrayList<Vector>(); @Override protected void setup(Context context) throws IOException, InterruptedException { Configuration conf = context.getConfiguration(); String centerFilePath = conf.get("centerFilePath"); FileSystem fs = FileSystem.get(conf); Path centerPath = new Path(centerFilePath); BufferedReader br = new BufferedReader(new InputStreamReader(fs.open(centerPath))); String line; while ((line = br.readLine()) != null) { String[] centerStr = line.split(","); double[] center = new double[centerStr.length]; for (int i = 0; i < centerStr.length; i++) { center[i] = Double.parseDouble(centerStr[i]); } centers.add(new DenseVector(center)); } br.close(); } @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] dataStr = value.toString().split(","); double[] data = new double[dataStr.length]; for (int i = 0; i < dataStr.length; i++) { data[i] = Double.parseDouble(dataStr[i]); } Vector vector = new DenseVector(data); int nearestCenterIndex = 0; double minDistance = Double.MAX_VALUE; for (int i = 0; i < centers.size(); i++) { double distance = DistanceMeasure.cosine(centers.get(i), vector); if (distance < minDistance) { minDistance = distance; nearestCenterIndex = i; } } context.write(new IntWritable(nearestCenterIndex), value); } } Reduce函数: public static class KMeansReduce extends Reducer<IntWritable, Text, IntWritable, Text> { @Override protected void reduce(IntWritable key, Iterable<Text> values, Context context) throws IOException, InterruptedException { List<Vector> vectors = new ArrayList<Vector>(); for (Text value : values) { String[] dataStr = value.toString().split(","); double[] data = new double[dataStr.length]; for (int i = 0; i < dataStr.length; i++) { data[i] = Double.parseDouble(dataStr[i]); } Vector vector = new DenseVector(data); vectors.add(vector); } Vector newCenter = KMeansUtil.calculateCenter(vectors); context.write(key, new Text(KMeansUtil.vectorToString(newCenter))); } } Driver函数: public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); conf.set("centerFilePath", args[2]); Job job = Job.getInstance(conf); job.setJobName("KMeans"); job.setOutputKeyClass(IntWritable.class); job.setOutputValueClass(Text.class); job.setMapperClass(KMeansMap.class); job.setReducerClass(KMeansReduce.class); job.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class); FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true); } 这里假设KMeansUtil类中已经实现了calculateCenter和vectorToString两个方法,分别用于计算新的聚类中心和将向量转换为字符串。
### 回答1: 以下是使用Python实现西瓜好坏判断的朴素贝叶斯代码示例: 首先,我们需要导入必要的库: python import pandas as pd from sklearn.naive_bayes import GaussianNB from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score 然后,我们需要准备数据集。这里我们使用UCI Machine Learning Repository中的西瓜数据集,可以从以下链接下载:https://archive.ics.uci.edu/ml/datasets/watermelon 将数据集下载并保存为watermelon.csv文件,然后使用pandas库读取数据: python data = pd.read_csv('watermelon.csv') 接下来,我们需要将数据集分为训练集和测试集。这里我们将80%的数据用于训练,20%的数据用于测试: python X_train, X_test, y_train, y_test = train_test_split(data.iloc[:, 1:7], data.iloc[:, 7], test_size=.2, random_state=) 然后,我们可以使用GaussianNB类来创建朴素贝叶斯分类器,并使用训练集来训练它: python clf = GaussianNB() clf.fit(X_train, y_train) 最后,我们可以使用测试集来测试分类器的准确性: python y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print('Accuracy:', accuracy) 完整代码如下: python import pandas as pd from sklearn.naive_bayes import GaussianNB from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score data = pd.read_csv('watermelon.csv') X_train, X_test, y_train, y_test = train_test_split(data.iloc[:, 1:7], data.iloc[:, 7], test_size=.2, random_state=) clf = GaussianNB() clf.fit(X_train, y_train) y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print('Accuracy:', accuracy) 注意:以上代码仅供参考,实际应用中需要根据具体情况进行调整和优化。 ### 回答2: 西瓜是很常见的一种水果,常见的品种有小瓜、大瓜、甜瓜、结瓜等。而如何判断一颗西瓜好坏,则需要对西瓜的外观和内部特征进行综合考虑。这就需要利用机器学习算法来对西瓜进行分类,以实现自动化的西瓜分类和判断。 在本文中,我们将采用朴素贝叶斯算法来对西瓜进行分类判断。朴素贝叶斯算法是经典的机器学习算法,作为一种分类算法,主要是在给定数据集的情况下预测新数据所属的类别。在这里,我们将采用Python编写朴素贝叶斯的分类代码,以判断西瓜是好还是坏。 首先,我们需要采集西瓜的数据集,包括西瓜的外观特征和内部质量特征。比如,西瓜的重量、大小、纹路、触感、甜度、含水量等。 接下来,我们需要使用Python的Scikit-learn包,以及Numpy,来编写朴素贝叶斯分类代码。具体步骤如下: 1.导入所需的Python库,包括Scikit-learn和Numpy。 import numpy as np from sklearn.naive_bayes import GaussianNB 2.设置训练集和测试集,将其分为特征集和标签集。 # 训练集特征集 X_train = np.array([[1, 1, 1, 1], [1, 1, 1, 2], [1, 0, 0, 1], [0, 1, 0, 1], [0, 1, 0, 2], [0, 0, 1, 1], [1, 1, 0, 1], [1, 1, 0, 2]]) # 训练集标签集 y_train = np.array([1, 1, 1, 1, 1, 0, 0, 0]) # 测试集特征集 X_test = np.array([[1, 0, 1, 1], [0, 0, 0, 1], [0, 1, 1, 1], [1, 0, 0, 2], [0, 0, 1, 2]]) # 测试集标签集 y_test = np.array([1, 1, 0, 0, 0]) 3.创建朴素贝叶斯分类模型以及训练模型。 # 创建高斯朴素贝叶斯分类器 gnb = GaussianNB() # 训练模型 gnb.fit(X_train, y_train) 4.使用训练好的朴素贝叶斯模型对测试集进行预测,并输出预测结果和准确率。 # 对测试集进行预测 y_pred = gnb.predict(X_test) # 输出预测结果 print("Predicted labels:", y_pred) # 输出准确率 print("Accuracy:",gnb.score(X_test, y_test)) 综合以上代码,我们就可以对西瓜进行好坏判断了。需要注意的是,在实际应用中,我们需要采集更多的数据样本,并进行数据预处理和特征工程,以提高分类模型的准确率和稳定性。 在实际使用过程中,朴素贝叶斯算法的精度往往比其他算法更高,且计算速度也较快。因此,朴素贝叶斯算法在实际应用中具有广泛的应用前景。 ### 回答3: 西瓜作为夏季人们常见的水果之一,在购买时,如何判断是否新鲜、好吃呢?传统的方式是通过观察外观、闻味、敲击声等方式,但是这些方法不仅需要经验和时间,还容易出现主观误判。为了解决这个问题,可以采用机器学习的方法,使用Python中的朴素贝叶斯算法来判断西瓜是否好坏。 首先,需要准备数据集,可以通过采集西瓜的相关特征参数,如色泽、根蒂、敲击声等。将这些参数作为输入特征数据,同时标注西瓜的好坏属性,即是否符合标准的好瓜。根据不同的数据来源和目的,数据集的规模可以进行扩充或者筛选,以提高模型的准确性。 接着,使用Python语言编写朴素贝叶斯算法的代码,可以使用sklearn库进行实现。输入特征数据集和好坏标签,通过数据预处理和特征选择的步骤,将数据集分成测试集和训练集。然后使用朴素贝叶斯模型对测试集进行训练。算法会根据输入特征的取值,分别计算出这个西瓜属于好瓜和坏瓜的概率,最终输出预测结果。 在预测时,可以输入一个新的西瓜样本,获取该西瓜的相关特征参数,并使用已训练的模型进行预测,判断该西瓜的好坏情况。根据预测结果,消费者可以选择是否购买这个西瓜。 总之,通过机器学习算法实现西瓜的好坏预测,可以提高判断准确度,减少主观误判,从而帮助消费者做出更明智的购物决策,也为商家提供更好的销售服务。
### 回答1: 线性判别分析(Linear Discriminant Analysis,简称LDA)是一种常用的模式识别和机器学习算法,它通过将样本投影到一个低维度线性空间中,以实现最大化类间距离并最小化类内距离的目标,从而实现分类任务。 要实现线性判别分析,可以按照以下步骤进行: 步骤1:导入所需的库和模块,如numpy、pandas等。 步骤2:读取西瓜数据集3.0,并将其分为特征和标签两部分。 步骤3:对每一类样本计算其均值向量。 步骤4:计算类内散度矩阵Sw和类间散度矩阵Sb。 步骤5:计算Sw的逆矩阵与Sb的乘积。 步骤6:对Sb*Sw的特征值和特征向量进行排序。 步骤7:选择最大的k个特征值对应的特征向量作为投影向量。 步骤8:将样本投影到投影向量所张成的低维空间中。 步骤9:利用投影后的样本进行新的分类任务。 以下是使用Python实现线性判别分析的代码示例: python import numpy as np import pandas as pd # 步骤2:读取西瓜数据集3.0 watermelon_data = pd.read_csv('watermelon_data.csv') # 假设数据集保存为watermelon_data.csv features = watermelon_data.iloc[:, :-1].values # 特征 labels = watermelon_data.iloc[:, -1].values # 标签 # 步骤3:计算均值向量 mean_vectors = [] # 存储每个类别的均值向量 for label in np.unique(labels): mean_vectors.append(np.mean(features[labels == label], axis=0)) # 步骤4:计算类内散度矩阵Sw和类间散度矩阵Sb Sb = np.zeros((features.shape[1], features.shape[1])) # 类间散度矩阵 Sw = np.zeros((features.shape[1], features.shape[1])) # 类内散度矩阵 overall_mean = np.mean(features, axis=0) # 全局均值向量 for label, mean_vector in zip(np.unique(labels), mean_vectors): n = features[labels == label].shape[0] # 类别样本数量 class_scatter_matrix = np.cov(features[labels == label].T, bias=True) # 类内散度矩阵 Sw += class_scatter_matrix mean_diff = (mean_vector - overall_mean).reshape(features.shape[1], 1) Sb += n * mean_diff.dot(mean_diff.T) # 步骤5:计算Sw的逆矩阵与Sb的乘积 eigen_values, eigen_vectors = np.linalg.eig(np.linalg.inv(Sw).dot(Sb)) # 步骤6:对特征值和特征向量进行排序 idx = np.argsort(np.abs(eigen_values))[::-1] eigen_values = eigen_values[idx] eigen_vectors = eigen_vectors[:, idx] # 步骤7:选择投影向量 k = 2 # 假设选择两个投影向量 projection_matrix = eigen_vectors[:, :k] # 步骤8:样本投影 projected_data = features.dot(projection_matrix) # 步骤9:进行新的分类任务 # 这一步根据具体需求选择分类算法进行分类 # 例如,使用K近邻算法进行分类 from sklearn.neighbors import KNeighborsClassifier X_train, X_test, y_train, y_test = train_test_split(projected_data, labels, test_size=0.3, random_state=42) knn = KNeighborsClassifier() knn.fit(X_train, y_train) predictions = knn.predict(X_test) 以上代码示例实现了线性判别分析,并通过投影将样本从原始高维空间投影到仅有两个特征的低维空间中,最后使用K近邻算法进行分类任务。根据具体需求,可以选择其他分类算法进行分类任务。 ### 回答2: 线性判别分析(Linear Discriminant Analysis,LDA)是一种经典的机器学习算法,用于降维和分类任务。它基于统计学原理,通过最大化类之间的可分离性和最小化类内的可分离性,找到一个最佳的投影方向,将数据映射到一维或更低维的空间。 下面是使用Python实现线性判别分析,并应用于西瓜数据集3.0的步骤: 1. 载入所需的Python库,例如numpy用于数组操作,pandas用于数据处理,matplotlib用于数据可视化。 import numpy as np import pandas as pd import matplotlib.pyplot as plt 2. 载入西瓜数据集3.0,可以使用pandas的read_csv函数读取csv文件,并将特征和标签分别存储到矩阵X和向量y中。 data = pd.read_csv('watermelon_dataset.csv') X = data.iloc[:, 1:-1].values y = data.iloc[:, -1].values 3. 计算各类别的均值向量和类内散度矩阵。 def calculate_mean_vectors(X, y): class_labels = np.unique(y) mean_vectors = [] for label in class_labels: mean_vectors.append(np.mean(X[y==label], axis=0)) return mean_vectors def calculate_within_class_scatter_matrix(X, y): class_labels = np.unique(y) num_features = X.shape[1] S_W = np.zeros((num_features, num_features)) mean_vectors = calculate_mean_vectors(X, y) for label, mean_vector in zip(class_labels, mean_vectors): class_scatter_matrix = np.zeros((num_features, num_features)) for sample in X[y==label]: sample, mean_vector = sample.reshape(num_features, 1), mean_vector.reshape(num_features, 1) class_scatter_matrix += (sample - mean_vector).dot((sample - mean_vector).T) S_W += class_scatter_matrix return S_W 4. 计算类间散度矩阵。 def calculate_between_class_scatter_matrix(X, y): class_labels = np.unique(y) num_features = X.shape[1] overall_mean = np.mean(X, axis=0).reshape(num_features, 1) S_B = np.zeros((num_features, num_features)) mean_vectors = calculate_mean_vectors(X, y) for i, mean_vector in enumerate(mean_vectors): n = X[y==class_labels[i]].shape[0] mean_vector = mean_vector.reshape(num_features, 1) S_B += n * (mean_vector - overall_mean).dot((mean_vector - overall_mean).T) return S_B 5. 计算特征向量和特征值,并选择投影方向。 def select_projection_direction(X, y, num_dimensions): S_W = calculate_within_class_scatter_matrix(X, y) S_B = calculate_between_class_scatter_matrix(X, y) eigen_values, eigen_vectors = np.linalg.eig(np.linalg.inv(S_W).dot(S_B)) eigen_pairs = [(np.abs(eigen_values[i]), eigen_vectors[:,i]) for i in range(len(eigen_values))] eigen_pairs.sort(key=lambda x: x[0], reverse=True) projection_matrix = np.hstack([eigen_pairs[i][1].reshape(num_dimensions, 1) for i in range(num_dimensions)]) return projection_matrix 6. 将数据映射到选择的投影方向,观察分类结果。 def project_data(X, projection_matrix): return X.dot(projection_matrix) projection_matrix = select_projection_direction(X, y, 1) X_prime = project_data(X, projection_matrix) plt.scatter(X_prime[y=='是'], np.zeros(len(X_prime[y=='是'])), color='r', label='是') plt.scatter(X_prime[y=='否'], np.zeros(len(X_prime[y=='否'])), color='b', label='否') plt.xlabel('投影向量') plt.legend() plt.show() 通过以上步骤,我们就可以实现线性判别分析,并且使用选择的投影方向将西瓜数据集3.0映射到一维空间。可视化结果显示了在投影空间中的分类结果,红色点表示‘是’类别,蓝色点表示‘否’类别。 ### 回答3: 编程实现线性判别分析是一种常用的降维和分类算法,可以有效地提取高维数据的主要特征,并进行分类预测。下面给出一个简单的 Python 实现示例,使用西瓜数据集3.0进行线性判别分析。 首先,我们需要导入必要的库和模块: import numpy as np import pandas as pd from sklearn.discriminant_analysis import LinearDiscriminantAnalysis 接下来,读取西瓜数据集3.0,并对其进行预处理: data = pd.read_csv("watermelon_3.csv") X = data.iloc[:, 1:3].values # 特征矩阵 y = data.iloc[:, -1].values # 标签向量 然后,我们使用 LinearDiscriminantAnalysis 类进行线性判别分析: lda = LinearDiscriminantAnalysis(n_components=1) # 指定降维后的维度为1 X_lda = lda.fit_transform(X, y) # 进行降维 最后,我们可以输出降维后的特征矩阵,并查看分类结果: print("降维后的特征矩阵:") print(X_lda) print("预测分类结果:") pred = lda.predict(X) for i in range(len(X)): print(f"样本 {i+1}: 预测为 {pred[i]}") 这样,我们就完成了使用线性判别分析对西瓜数据集3.0进行降维和分类的编程实现。当然,具体的实现还会涉及到一些数据预处理、模型评估等其他步骤,但以上示例可以作为一个简单的起点。

最新推荐

安全文明监理实施细则_工程施工土建监理资料建筑监理工作规划方案报告_监理实施细则.ppt

安全文明监理实施细则_工程施工土建监理资料建筑监理工作规划方案报告_监理实施细则.ppt

"REGISTOR:SSD内部非结构化数据处理平台"

REGISTOR:SSD存储裴舒怡,杨静,杨青,罗德岛大学,深圳市大普微电子有限公司。公司本文介绍了一个用于在存储器内部进行规则表达的平台REGISTOR。Registor的主要思想是在存储大型数据集的存储中加速正则表达式(regex)搜索,消除I/O瓶颈问题。在闪存SSD内部设计并增强了一个用于regex搜索的特殊硬件引擎,该引擎在从NAND闪存到主机的数据传输期间动态处理数据为了使regex搜索的速度与现代SSD的内部总线速度相匹配,在Registor硬件中设计了一种深度流水线结构,该结构由文件语义提取器、匹配候选查找器、regex匹配单元(REMU)和结果组织器组成。此外,流水线的每个阶段使得可能使用最大等位性。为了使Registor易于被高级应用程序使用,我们在Linux中开发了一组API和库,允许Registor通过有效地将单独的数据块重组为文件来处理SSD中的文件Registor的工作原

typeerror: invalid argument(s) 'encoding' sent to create_engine(), using con

这个错误通常是由于使用了错误的参数或参数格式引起的。create_engine() 方法需要连接数据库时使用的参数,例如数据库类型、用户名、密码、主机等。 请检查你的代码,确保传递给 create_engine() 方法的参数是正确的,并且符合参数的格式要求。例如,如果你正在使用 MySQL 数据库,你需要传递正确的数据库类型、主机名、端口号、用户名、密码和数据库名称。以下是一个示例: ``` from sqlalchemy import create_engine engine = create_engine('mysql+pymysql://username:password@hos

数据库课程设计食品销售统计系统.doc

数据库课程设计食品销售统计系统.doc

海量3D模型的自适应传输

为了获得的目的图卢兹大学博士学位发布人:图卢兹国立理工学院(图卢兹INP)学科或专业:计算机与电信提交人和支持人:M. 托马斯·福吉奥尼2019年11月29日星期五标题:海量3D模型的自适应传输博士学校:图卢兹数学、计算机科学、电信(MITT)研究单位:图卢兹计算机科学研究所(IRIT)论文主任:M. 文森特·查维拉特M.阿克塞尔·卡里尔报告员:M. GWendal Simon,大西洋IMTSIDONIE CHRISTOPHE女士,国家地理研究所评审团成员:M. MAARTEN WIJNANTS,哈塞尔大学,校长M. AXEL CARLIER,图卢兹INP,成员M. GILLES GESQUIERE,里昂第二大学,成员Géraldine Morin女士,图卢兹INP,成员M. VINCENT CHARVILLAT,图卢兹INP,成员M. Wei Tsang Ooi,新加坡国立大学,研究员基于HTTP的动态自适应3D流媒体2019年11月29日星期五,图卢兹INP授予图卢兹大学博士学位,由ThomasForgione发表并答辩Gilles Gesquière�

1.创建以自己姓名拼音缩写为名的数据库,创建n+自己班级序号(如n10)为名的数据表。2.表结构为3列:第1列列名为id,设为主键、自增;第2列列名为name;第3列自拟。 3.为数据表创建模型,编写相应的路由、控制器和视图,视图中用无序列表(ul 标签)呈现数据表name列所有数据。 4.创建视图,在表单中提供两个文本框,第一个文本框用于输入以上数据表id列相应数值,以post方式提交表单。 5.控制器方法根据表单提交的id值,将相应行的name列修改为第二个文本框中输入的数据。

步骤如下: 1. 创建数据库和数据表 创建名为xny_n10的数据表,其中xny为姓名拼音缩写,n10为班级序号。 ``` CREATE DATABASE IF NOT EXISTS xny_n10; USE xny_n10; CREATE TABLE IF NOT EXISTS xny_n10 ( id INT(11) PRIMARY KEY AUTO_INCREMENT, name VARCHAR(50), column3 VARCHAR(50) ); ``` 2. 创建模型 在app/Models目录下创建XnyN10.php文件,定义XnyN10模型类,继承自I

液压推板式隧道电阻炉计算机监控设计毕业设计.doc

液压推板式隧道电阻炉计算机监控设计毕业设计.doc

HAL多学科开放获取档案库的作用及代理重加密和认证委托的研究

0HAL编号:tel-038172580https://theses.hal.science/tel-038172580提交日期:2022年10月17日0HAL是一个多学科开放获取档案库,用于存储和传播科学研究文档,无论其是否发表。这些文档可以来自法国或国外的教育和研究机构,也可以来自公共或私人研究中心。0HAL多学科开放获取档案库旨在存储和传播法国或国外的教育和研究机构、公共或私人实验室发表或未发表的研究文档。0代理重加密和认证委托的贡献0Anass Sbai0引用此版本:0Anass Sbai. 代理重加密和认证委托的贡献. 离散数学[cs.DM]. 皮卡第朱尔大学, 2021. 法语. �NNT:2021AMIE0032�. �tel-03817258�0博士学位论文0专业“计算机科学”0提交给科技与健康学院博士学位学校0皮卡第朱尔大学0由0Anass SBAI0获得皮卡第朱尔大学博士学位0代理重加密和认证委托的贡献0于2021年7月5日,在评审人的意见后,面向考试委员会进行

c++输入若干不同的整数构成的升序序列,请编写一个程序,找出序列中有多少个数是序列中其他两个数的平均值要求使用算法,使计算量最小,计算时间最短

算法思路: 1. 先将输入的升序序列存储到vector<int>中 2. 枚举每个数,以该数为平均数,查找序列中是否存在两个数的平均值等于该数 3. 可以采用双指针法,从序列的两端开始查找,如果两个指针所指的数的平均值大于目标数,则右指针左移;如果平均值小于目标数,则左指针右移;如果平均值等于目标数,则找到一个符合条件的数 4. 计数器加1,继续枚举下一个数 代码实现如下: ```c++ #include<iostream> #include<vector> using namespace std; int main() { int n; cin >> n;

基于jsp的景区票务系统源码数据库论文.doc

基于jsp的景区票务系统源码数据库论文.doc