list1=[0,4,3,5,1] list_new=list1.append(7) print(list_new)为什么结果是None
时间: 2024-04-01 21:34:43 浏览: 38
这是因为 `list.append()` 方法会在原列表上添加元素,而不是返回一个新的列表。所以,当你调用 `list_new=list1.append(7)` 时,`list_new` 实际上被赋值为 `None`,因为 `list.append()` 方法没有返回值。若要在原列表上添加元素并返回新的列表,可以使用 `list.extend()` 方法。例如,`list_new = list1 + [7]` 或 `list1.extend([7])`。
相关问题
使用C++ eigen库翻译以下python代码import pandas as pd import numpy as np import time import random def main(): eigen_list = [] data = [[1,2,4,7,6,3],[3,20,1,2,5,4],[2,0,1,5,8,6],[5,3,3,6,3,2],[6,0,5,2,19,3],[5,2,4,9,6,3]] g_csi_corr = np.cov(data, rowvar=True) #print(g_csi_corr) eigenvalue, featurevector = np.linalg.eigh(g_csi_corr) print("eigenvalue:",eigenvalue) eigen_list.append(max(eigenvalue)) #以下代码验证求解csi阈值 eigen_list.append(1.22) eigen_list.append(-54.21) eigen_list.append(8.44) eigen_list.append(-27.83) eigen_list.append(33.12) #eigen_list.append(40.29) print(eigen_list) eigen_a1 = np.array(eigen_list) num1 = len(eigen_list) eigen_a2 = eigen_a1.reshape((-1, num1)) eigen_a3 = np.std(eigen_a2, axis=0) eigen_a4 = eigen_a3.tolist() k = (0.016 - 0.014) / (max(eigen_a4) - min(eigen_a4)) eigen_a5 = [0.014 + k * (i - min(eigen_a4)) for i in eigen_a4] tri_threshold = np.mean(eigen_a5)
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{
std::vector<double> eigen_list;
MatrixXd data(6, 6);
data << 1, 2, 4, 7, 6, 3,
3, 20, 1, 2, 5, 4,
2, 0, 1, 5, 8, 6,
5, 3, 3, 6, 3, 2,
6, 0, 5, 2, 19, 3,
5, 2, 4, 9, 6, 3;
MatrixXd g_csi_corr = data.transpose() * data / 6.0;
EigenSolver<MatrixXd> es(g_csi_corr);
VectorXd eigenvalue = es.eigenvalues().real();
std::cout << "eigenvalue: " << eigenvalue.transpose() << std::endl;
eigen_list.push_back(eigenvalue.maxCoeff());
eigen_list.push_back(1.22);
eigen_list.push_back(-54.21);
eigen_list.push_back(8.44);
eigen_list.push_back(-27.83);
eigen_list.push_back(33.12);
//eigen_list.push_back(40.29);
std::cout << "eigen_list: ";
for (std::vector<double>::iterator it = eigen_list.begin(); it != eigen_list.end(); ++it)
std::cout << *it << " ";
std::cout << std::endl;
int num1 = eigen_list.size();
MatrixXd eigen_a2 = Map<MatrixXd>(eigen_list.data(), num1, 1);
VectorXd eigen_a3 = eigen_a2.array().rowwise().mean().transpose();
VectorXd eigen_a4 = (eigen_a2 - eigen_a3.replicate(num1, 1)).array().abs().rowwise().mean().transpose();
double k = 0.002 / (eigen_a4.maxCoeff() - eigen_a4.minCoeff());
VectorXd eigen_a5 = 0.014 + k * (eigen_a4.array() - eigen_a4.minCoeff());
double tri_threshold = eigen_a5.mean();
std::cout << "tri_threshold: " << tri_threshold << std::endl;
return 0;
}
class Node1: def init(self, data): self.data = data self.next = None self.prev = None class DoublyLinkedList: def init(self): self.head = None def append(self, data): new_node = Node1(data) if self.head is None: self.head = new_node else: cur = self.head while cur.next: cur = cur.next cur.next = new_node new_node.prev = cur def prepend(self, data): new_node = Node1(data) if self.head is None: self.head = new_node else: self.head.prev = new_node new_node.next = self.head self.head = new_node def print_list(self): cur = self.head while cur: print(" <- ", end="") print(cur.data, end="") print(" -> ", end="") cur = cur.next print("None")
这段代码实现了一个双向链表,其中包括一个节点类 Node1 和双向链表类 DoublyLinkedList。节点类中包含数据和前继节点、后继节点。双向链表类中包含头指针 head 和三个方法:append、prepend 和 print_list。
- append 方法:在链表末尾添加节点。如果链表为空,则将头指针指向新节点;否则,遍历链表找到末尾节点,将其后继节点指向新节点,并将新节点的前继节点指向末尾节点。
- prepend 方法:在链表头部添加节点。如果链表为空,则将头指针指向新节点;否则,将新节点的后继节点指向头节点,将头节点的前继节点指向新节点,并将头指针指向新节点。
- print_list 方法:遍历链表并打印每个节点的数据,其中箭头表示节点间的前后关系,None 表示链表尾部的空指针。
阅读全文