用julia写一个rnn
时间: 2023-05-27 07:04:47 浏览: 109
以下是一个简单的RNN实现,使用Julia语言和Flux深度学习库:
```
using Flux
# 创建一个简单的RNN模型
function create_rnn(input_size, hidden_size, output_size)
# 定义模型的参数
Wxh = param(randn(hidden_size, input_size))
Whh = param(randn(hidden_size, hidden_size))
Why = param(randn(output_size, hidden_size))
bh = param(zeros(hidden_size))
by = param(zeros(output_size))
# 定义RNN模型的前向传播函数
function rnn(x, h)
h = tanh.(Wxh * x .+ Whh * h .+ bh)
y = Why * h .+ by
return y, h
end
# 定义损失函数和优化器
loss(x, y) = logitbinarycrossentropy(loss_model(x), y)
opt = ADAM()
# 定义模型
model = Chain(Dense(input_size, hidden_size, tanh), Recur(rnn, hidden_size, hidden_size), Dense(hidden_size, output_size))
return model, loss, opt
end
# 定义训练函数
function train_rnn(model, lossfun, opt, input, target, epochs)
for epoch in 1:epochs
total_loss = 0
for i in 1:size(input, 2)
x = input[:, i]
y = target[:, i]
loss_val = lossfun(x, y)
total_loss += loss_val
Flux.back!(loss_val)
opt.update!(params(model))
end
println("Epoch $epoch, loss: $(total_loss/size(input,2))")
end
end
# 生成数据
input_size = 4
output_size = 1
sequence_length = 10
batch_size = 16
input = rand(input_size, sequence_length, batch_size)
target = rand(output_size, sequence_length, batch_size)
# 创建模型并训练
model, loss, opt = create_rnn(input_size, 128, output_size)
train_rnn(model, loss, opt, input, target, 100)
```
该代码生成一个随机输入和目标数据的序列,然后使用训练数据训练一个简单的RNN模型。在训练过程中,损失值将被输出到控制台,以便您了解模型的训练进度。
阅读全文