请举一个代码的例子详细说明
时间: 2024-04-22 13:23:40 浏览: 233
以下是一个简单的SAC算法代码实现,其中包含了reward scaling的实现:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
class Actor(nn.Module):
def __init__(self, input_dim, output_dim):
super(Actor, self).__init__()
self.fc1 = nn.Linear(input_dim, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, output_dim)
def forward(self, state):
x = torch.relu(self.fc1(state))
x = torch.relu(self.fc2(x))
x = torch.tanh(self.fc3(x))
return x
class Critic(nn.Module):
def __init__(self, input_dim, output_dim):
super(Critic, self).__init__()
self.fc1 = nn.Linear(input_dim + output_dim, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, 1)
def forward(self, state, action):
x = torch.cat([state, action], 1)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
class SAC:
def __init__(self, state_dim, action_dim, gamma=0.99, alpha=0.2):
self.actor = Actor(state_dim, action_dim)
self.actor_target = Actor(state_dim, action_dim)
self.critic1 = Critic(state_dim, action_dim)
self.critic2 = Critic(state_dim, action_dim)
self.critic1_target = Critic(state_dim, action_dim)
self.critic2_target = Critic(state_dim, action_dim)
self.gamma = gamma
self.alpha = alpha
self.actor_optim = optim.Adam(self.actor.parameters(), lr=1e-3)
self.critic1_optim = optim.Adam(self.critic1.parameters(), lr=1e-3)
self.critic2_optim = optim.Adam(self.critic2.parameters(), lr=1e-3)
def select_action(self, state):
state = torch.tensor(state, dtype=torch.float32)
action = self.actor(state)
return action.detach().numpy()
def update(self, memory, batch_size):
state, action, reward, next_state, done = memory.sample(batch_size)
state = torch.tensor(state, dtype=torch.float32)
action = torch.tensor(action, dtype=torch.float32)
reward = torch.tensor(reward, dtype=torch.float32)
next_state = torch.tensor(next_state, dtype=torch.float32)
done = torch.tensor(done, dtype=torch.float32)
with torch.no_grad():
next_action = self.actor_target(next_state)
q1_next_target = self.critic1_target(next_state, next_action)
q2_next_target = self.critic2_target(next_state, next_action)
q_next_target = torch.min(q1_next_target, q2_next_target)
target = reward + (1 - done) * self.gamma * (q_next_target - self.alpha * torch.log(self.actor(next_state)))
q1 = self.critic1(state, action)
q2 = self.critic2(state, action)
critic1_loss = nn.functional.mse_loss(q1, target)
critic2_loss = nn.functional.mse_loss(q2, target)
self.critic1_optim.zero_grad()
critic1_loss.backward()
self.critic1_optim.step()
self.critic2_optim.zero_grad()
critic2_loss.backward()
self.critic2_optim.step()
if np.random.random() < 0.5:
actor_loss = -(self.critic1(state, self.actor(state)) - self.alpha * torch.log(self.actor(state))).mean()
else:
actor_loss = -(self.critic2(state, self.actor(state)) - self.alpha * torch.log(self.actor(state))).mean()
self.actor_optim.zero_grad()
actor_loss.backward()
self.actor_optim.step()
for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
target_param.data.copy_(0.995 * target_param.data + 0.005 * param.data)
for param, target_param in zip(self.critic1.parameters(), self.critic1_target.parameters()):
target_param.data.copy_(0.995 * target_param.data + 0.005 * param.data)
for param, target_param in zip(self.critic2.parameters(), self.critic2_target.parameters()):
target_param.data.copy_(0.995 * target_param.data + 0.005 * param.data)
return critic1_loss.item(), critic2_loss.item(), actor_loss.item()
```
在这个SAC算法中,我们可以看到在update函数中,对reward进行了放缩。具体来说,在计算target值时,奖励值reward被乘上了一个(1 - done)的因子,同时除以了温度参数alpha的值,以控制策略的熵惩罚项大小。这个放缩的过程可以在以下代码中找到:
```
target = reward + (1 - done) * self.gamma * (q_next_target - self.alpha * torch.log(self.actor(next_state)))
```
其中,reward被乘上了(1 - done)的因子,除以了alpha的值,以控制策略的熵惩罚项大小。这样可以使得奖励值的范围变得更加合理,从而更好地适应神经网络模型的训练。
阅读全文
相关推荐















