下面这段代码什么意思:n=4 df = pd.DataFrame({'group': list('aabbabbbababaababbba'), 'value': [1,2,np.nan,2,4,np.nan,9,2,np.nan,3,7,6,8,np.nan,6,np.nan,np.nan,0,6,5]}) ndfa=df[df["group"] == "a"] ndfb=df[df["group"] == "b"] movingaverage1=[] movingaverage2=[] len1=len(ndfa["value"]) len2=len(ndfb["value"]) for i in range(1,len1+1): if i<=n: if True in np.array(np.isnan((ndfa[:1])["value"])): movingaverage1.append(0) else: sub_ndfa=ndfa[:i] sub_ndfa_withoutNaN=sub_ndfa[pd.notnull((sub_ndfa["value"]))]["value"] movingaverage1.append((sub_ndfa_withoutNaN.copy()).mean()) else: sub_ndfa=ndfa[i-n:i] sub_ndfa_withoutNaN=sub_ndfa[pd.notnull((sub_ndfa["value"]))]["value"] movingaverage1.append((sub_ndfa_withoutNaN.copy()).mean()) for i in range(1,len2+1): if i<=n: if True in np.array(np.isnan((ndfb[:1])["value"])): movingaverage2.append("0") else: sub_ndfb=ndfb[:i] sub_ndfb_withoutNaN=sub_ndfb[pd.notnull((sub_ndfb["value"]))]["value"] movingaverage2.append((sub_ndfb_withoutNaN.copy()).mean()) else: sub_ndfb=ndfb[i-n:i] sub_ndfb_withoutNaN=sub_ndfb[pd.notnull((sub_ndfb["value"]))]["value"] movingaverage2.append((sub_ndfb_withoutNaN.copy()).mean()) #确定顺序 astation=[] bstation=[] nlist=[] c=0 d=0 e=0 for i in df["group"]: if i=="a": astation.append(c) else: bstation.append(c) c+=1 for i in range(0,len1+len2): if i in astation: nlist.append(movingaverage1[d]) d+=1 else: nlist.append(movingaverage2[e]) e+=1 flist=pd.Series(nlist) print(flist)

时间: 2023-05-22 07:06:37 浏览: 119
这段代码是对一个包含两个列("group"和"value")的DataFrame进行处理,其中"group"列包含值"a"和"b","value"列包含一系列数字值以及NaN(缺失值)。通过取出"group"列中值为"a"和"b"的行,分别计算它们的移动平均值,并将这些移动平均值存储在两个列表(movingaverage1和movingaverage2)中。移动平均值的窗口大小为n。在计算过程中,将NaN值替换为0或者字符串"0",并将只包含NaN值的数据排除在计算范围之外。
相关问题

用python优化它:这段代码什么意思:n=4 df = pd.DataFrame({'group': list('aabbabbbababaababbba'), 'value': [1,2,np.nan,2,4,np.nan,9,2,np.nan,3,7,6,8,np.nan,6,np.nan,np.nan,0,6,5]}) ndfa=df[df["group"] == "a"] ndfb=df[df["group"] == "b"] movingaverage1=[] movingaverage2=[] len1=len(ndfa["value"]) len2=len(ndfb["value"]) for i in range(1,len1+1): if i<=n: if True in np.array(np.isnan((ndfa[:1])["value"])): movingaverage1.append(0) else: sub_ndfa=ndfa[:i] sub_ndfa_withoutNaN=sub_ndfa[pd.notnull((sub_ndfa["value"]))]["value"] movingaverage1.append((sub_ndfa_withoutNaN.copy()).mean()) else: sub_ndfa=ndfa[i-n:i] sub_ndfa_withoutNaN=sub_ndfa[pd.notnull((sub_ndfa["value"]))]["value"] movingaverage1.append((sub_ndfa_withoutNaN.copy()).mean()) for i in range(1,len2+1): if i<=n: if True in np.array(np.isnan((ndfb[:1])["value"])): movingaverage2.append("0") else: sub_ndfb=ndfb[:i] sub_ndfb_withoutNaN=sub_ndfb[pd.notnull((sub_ndfb["value"]))]["value"] movingaverage2.append((sub_ndfb_withoutNaN.copy()).mean()) else: sub_ndfb=ndfb[i-n:i] sub_ndfb_withoutNaN=sub_ndfb[pd.notnull((sub_ndfb["value"]))]["value"] movingaverage2.append((sub_ndfb_withoutNaN.copy()).mean()) #确定顺序 astation=[] bstation=[] nlist=[] c=0 d=0 e=0 for i in df["group"]: if i=="a": astation.append(c) else: bstation.append(c) c+=1 for i in range(0,len1+len2): if i in astation: nlist.append(movingaverage1[d]) d+=1 else: nlist.append(movingaverage2[e]) e+=1 flist=pd.Series(nlist) print(flist)

这段代码实现了对DataFrame中按照"group"分组后,对"value"一列进行滑动平均的计算,并将计算结果存储在两个列表中(分别对应两个不同的"group")。 首先,将DataFrame按照"group"分成两个子集ndfa和ndfb。然后,分别对这两个子集的"value"一列计算滑动平均,计算方式是每次向前移动1个单位进行平均,如果当前位置与之前的(n-1)个位置有nan值,则将平均值设为0。最终,将每次计算的结果存储在两个不同的列表中,分别对应两个不同的"group"。

请优化下面这段代码:n=4 df = pd.DataFrame({'group': list('aabbabbbababaababbba'), 'value': [1,2,np.nan,2,4,np.nan,9,2,np.nan,3,7,6,8,np.nan,6,np.nan,np.nan,0,6,5]}) ndfa=df[df["group"] == "a"] ndfb=df[df["group"] == "b"] movingaverage1=[] movingaverage2=[] len1=len(ndfa["value"]) len2=len(ndfb["value"]) for i in range(1,len1+1): if i<=n: if True in np.array(np.isnan((ndfa[:1])["value"])): movingaverage1.append(0) else: sub_ndfa=ndfa[:i] sub_ndfa_withoutNaN=sub_ndfa[pd.notnull((sub_ndfa["value"]))]["value"] movingaverage1.append((sub_ndfa_withoutNaN.copy()).mean()) else: sub_ndfa=ndfa[i-n:i] sub_ndfa_withoutNaN=sub_ndfa[pd.notnull((sub_ndfa["value"]))]["value"] movingaverage1.append((sub_ndfa_withoutNaN.copy()).mean()) for i in range(1,len2+1): if i<=n: if True in np.array(np.isnan((ndfb[:1])["value"])): movingaverage2.append("0") else: sub_ndfb=ndfb[:i] sub_ndfb_withoutNaN=sub_ndfb[pd.notnull((sub_ndfb["value"]))]["value"] movingaverage2.append((sub_ndfb_withoutNaN.copy()).mean()) else: sub_ndfb=ndfb[i-n:i] sub_ndfb_withoutNaN=sub_ndfb[pd.notnull((sub_ndfb["value"]))]["value"] movingaverage2.append((sub_ndfb_withoutNaN.copy()).mean()) #确定顺序 astation=[] bstation=[] nlist=[] c=0 d=0 e=0 for i in df["group"]: if i=="a": astation.append(c) else: bstation.append(c) c+=1 for i in range(0,len1+len2): if i in astation: nlist.append(movingaverage1[d]) d+=1 else: nlist.append(movingaverage2[e]) e+=1 flist=pd.Series(nlist) print(flist)

可以优化的地方: 1. 首先可以将 ndfa 和 ndfb 的重复代码合并: ndfa=df[df["group"] == "a"] ndfb=df[df["group"] == "b"] 可以改成: ndf_grouped = df.groupby("group") ndfa = ndf_grouped.get_group("a") ndfb = ndf_grouped.get_group("b") 这样可以避免重复代码,并且可以处理更多的组别。 2. 对于计算滑动平均的部分,可以使用 rolling 方法: movingaverage1 = ndfa["value"].rolling(n, min_periods=1).mean().tolist() movingaverage2 = ndfb["value"].rolling(n, min_periods=1).mean().tolist() 这样可以避免使用循环,代码更简洁,运行速度也更快。 优化后的代码如下: df = pd.DataFrame({'group': list('aabbabbbababaababbba'), 'value': [1,2,np.nan,2,4,np.nan,9,2,np.nan,3,7,6,8,np.nan,6,np.nan,np.nan,0,6,5]}) ndf_grouped = df.groupby("group") ndfa = ndf_grouped.get_group("a") ndfb = ndf_grouped.get_group("b") n = 4 movingaverage1 = ndfa["value"].rolling(n, min_periods=1).mean().tolist() movingaverage2 = ndfb["value"].rolling(n, min_periods=1).mean().tolist() print(movingaverage1) print(movingaverage2)
阅读全文

相关推荐

import pandas as pd import pyecharts.options as opts from pyecharts.charts import Bar, Line from pyecharts.render import make_snapshot from snapshot_selenium import snapshot as driver x_data = ["1月", "2月", "3月", "4月", "5月", "6月", "7月", "8月", "9月", "10月", "11月", "12月"] # 导入数据 df = pd.read_csv('E:/pythonProject1/第8章实验数据/beijing_AQI_2018.csv') attr = df['Date'].tolist() v1 = df['AQI'].tolist() v2=df['PM'].tolist() # 对AQI进行求平均值 data={'Date':pd.to_datetime(attr),'AQI':v1} df1 = pd.DataFrame(data) total=df1['AQI'].groupby([df1['Date'].dt.strftime('%m')]).mean() d1=total.tolist() y1=[] for i in d1: y1.append(int(i)) # print(d1) # print(y1) # 对PM2.5求平均值 data1={'Date':pd.to_datetime(attr),'PM':v2} df2 = pd.DataFrame(data1) total1=df2['PM'].groupby([df2['Date'].dt.strftime('%m')]).mean() d2=total1.tolist() y2=[] for i in d2: y2.append(int(i)) # print(d2) bar = ( Bar() .add_xaxis(xaxis_data=x_data) .add_yaxis( series_name="PM2.5", y_axis=y2, label_opts=opts.LabelOpts(is_show=False), color="#5793f3" ) .extend_axis( yaxis=opts.AxisOpts( name="平均浓度", type_="value", min_=0, max_=150, interval=30, axislabel_opts=opts.LabelOpts(formatter="{value}"), ) ) .set_global_opts( tooltip_opts=opts.TooltipOpts( is_show=True, trigger="axis", axis_pointer_type="cross" ), xaxis_opts=opts.AxisOpts( type_="category", axispointer_opts=opts.AxisPointerOpts(is_show=True, type_="shadow"), ), ) ) line = ( Line() .add_xaxis(xaxis_data=x_data) .add_yaxis( series_name="AQI", yaxis_index=1, y_axis=y1, label_opts=opts.LabelOpts(is_show=False), color='rgb(192,0, 0,0.2)' ) ) bar.overlap(line).render("five.html") bar.options.update(backgroundColor="#F7F7F7")

import pandas as pd import math as mt import numpy as np from sklearn.model_selection import train_test_split from Recommenders import SVDRecommender triplet_dataset_sub_song_merged = triplet_dataset_sub_song_mergedpd triplet_dataset_sub_song_merged_sum_df = triplet_dataset_sub_song_merged[['user','listen_count']].groupby('user').sum().reset_index() triplet_dataset_sub_song_merged_sum_df.rename(columns={'listen_count':'total_listen_count'},inplace=True) triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song_merged,triplet_dataset_sub_song_merged_sum_df) triplet_dataset_sub_song_merged['fractional_play_count'] = triplet_dataset_sub_song_merged['listen_count']/triplet_dataset_sub_song_merged small_set = triplet_dataset_sub_song_merged user_codes = small_set.user.drop_duplicates().reset_index() song_codes = small_set.song.drop_duplicates().reset_index() user_codes.rename(columns={'index':'user_index'}, inplace=True) song_codes.rename(columns={'index':'song_index'}, inplace=True) song_codes['so_index_value'] = list(song_codes.index) user_codes['us_index_value'] = list(user_codes.index) small_set = pd.merge(small_set,song_codes,how='left') small_set = pd.merge(small_set,user_codes,how='left') mat_candidate = small_set[['us_index_value','so_index_value','fractional_play_count']] data_array = mat_candidate.fractional_play_count.values row_array = mat_candidate.us_index_value.values col_array = mat_candidate.so_index_value.values data_sparse = coo_matrix((data_array, (row_array, col_array)),dtype=float) K=50 urm = data_sparse MAX_PID = urm.shape[1] MAX_UID = urm.shape[0] recommender = SVDRecommender(K) U, S, Vt = recommender.fit(urm) Compute recommendations for test users uTest = [1,6,7,8,23] uTest_recommended_items = recommender.recommend(uTest, urm, 10) Output recommended songs in a dataframe recommendations = pd.DataFrame(columns=['user','song', 'score','rank']) for user in uTest: rank = 1 for song_index in uTest_recommended_items[user, 0:10]: song = small_set.loc[small_set['so_index_value'] == song_index].iloc[0] # Get song details recommendations = recommendations.append({'user': user, 'song': song['title'], 'score': song['fractional_play_count'], 'rank': rank}, ignore_index=True) rank += 1 display(recommendations)这段代码报错了,为什么?给出修改后的 代码

将上述代码放入了Recommenders.py文件中,作为一个自定义工具包。将下列代码中调用scipy包中svd的部分。转为使用Recommenders.py工具包中封装的svd方法。给出修改后的完整代码。import pandas as pd import math as mt import numpy as np from sklearn.model_selection import train_test_split from Recommenders import * from scipy.sparse.linalg import svds from scipy.sparse import coo_matrix from scipy.sparse import csc_matrix # Load and preprocess data triplet_dataset_sub_song_merged = triplet_dataset_sub_song_mergedpd # load dataset triplet_dataset_sub_song_merged_sum_df = triplet_dataset_sub_song_merged[['user','listen_count']].groupby('user').sum().reset_index() triplet_dataset_sub_song_merged_sum_df.rename(columns={'listen_count':'total_listen_count'},inplace=True) triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song_merged,triplet_dataset_sub_song_merged_sum_df) triplet_dataset_sub_song_merged['fractional_play_count'] = triplet_dataset_sub_song_merged['listen_count']/triplet_dataset_sub_song_merged['total_listen_count'] # Convert data to sparse matrix format small_set = triplet_dataset_sub_song_merged user_codes = small_set.user.drop_duplicates().reset_index() song_codes = small_set.song.drop_duplicates().reset_index() user_codes.rename(columns={'index':'user_index'}, inplace=True) song_codes.rename(columns={'index':'song_index'}, inplace=True) song_codes['so_index_value'] = list(song_codes.index) user_codes['us_index_value'] = list(user_codes.index) small_set = pd.merge(small_set,song_codes,how='left') small_set = pd.merge(small_set,user_codes,how='left') mat_candidate = small_set[['us_index_value','so_index_value','fractional_play_count']] data_array = mat_candidate.fractional_play_count.values row_array = mat_candidate.us_index_value.values col_array = mat_candidate.so_index_value.values data_sparse = coo_matrix((data_array, (row_array, col_array)),dtype=float) # Compute SVD def compute_svd(urm, K): U, s, Vt = svds(urm, K) dim = (len(s), len(s)) S = np.zeros(dim, dtype=np.float32) for i in range(0, len(s)): S[i,i] = mt.sqrt(s[i]) U = csc_matrix(U, dtype=np.float32) S = csc_matrix(S, dtype=np.float32) Vt = csc_matrix(Vt, dtype=np.float32) return U, S, Vt def compute_estimated_matrix(urm, U, S, Vt, uTest, K, test): rightTerm = S*Vt max_recommendation = 10 estimatedRatings = np.zeros(shape=(MAX_UID, MAX_PID), dtype=np.float16) recomendRatings = np.zeros(shape=(MAX_UID,max_recommendation ), dtype=np.float16) for userTest in uTest: prod = U[userTest, :]*rightTerm estimatedRatings[userTest, :] = prod.todense() recomendRatings[userTest, :] = (-estimatedRatings[userTest, :]).argsort()[:max_recommendation] return recomendRatings K=50 # number of factors urm = data_sparse MAX_PID = urm.shape[1] MAX_UID = urm.shape[0] U, S, Vt = compute_svd(urm, K) # Compute recommendations for test users # Compute recommendations for test users uTest = [1,6,7,8,23] uTest_recommended_items = compute_estimated_matrix(urm, U, S, Vt, uTest, K, True) # Output recommended songs in a dataframe recommendations = pd.DataFrame(columns=['user','song', 'score','rank']) for user in uTest: rank = 1 for song_index in uTest_recommended_items[user, 0:10]: song = small_set.loc[small_set['so_index_value'] == song_index].iloc[0] # Get song details recommendations = recommendations.append({'user': user, 'song': song['title'], 'score': song['fractional_play_count'], 'rank': rank}, ignore_index=True) rank += 1 display(recommendations)

import matplotlib.pyplot as plt import pandas as pd plt.rcParams['font.family']='sans-serif' plt.rcParams['font.sans-serif'] = ['Simhei'] plt.rcParams['axes.unicode_minus'] = False filename = "../task/ershoufang_jinan_utf8_clean.csv" names = ["id","communityName","areaName","total","unitPriceValue", "fwhx","szlc","jzmj","hxjg","tnmj", "jzlx","fwcx","jzjg","zxqk","thbl", "pbdt","cqnx","gpsj","jyqs","scjy", "fwyt","fwnx","cqss","dyxx","fbbj", "aa","bb","cc","dd"] miss_value = ["null","暂无数据"] df = pd.read_csv(filename,header=None, skiprows=[0],names=names,na_values=miss_value) 步骤一:二手房单价箱线图 通过箱线图分析二手房单价在各个区域的对比。 """各区域二手房单价箱线图""" #数据分组、数据运算和聚合 box_unitprice_area = df["unitPriceValue"].groupby(df["areaName"]) flag = True box_data = pd.DataFrame(list(range(21000)),columns=["start"]) for name,group in box_unitprice_area: box_data[name] = group del box_data["start"] fig = plt.figure(figsize=(12,7)) ax = fig.add_subplot(111) ax.set_ylabel("总价(万元)",fontsize=14) ax.set_title("各区域二手房单价箱线图",fontsize=18) box_data.plot(kind="box",fontsize=12,sym='r+',grid=True,ax=ax,yticks=[20000,30000,40000,50000,100000]) 可以对比济南各个区的二手房均价和分布。 步骤二:二手房总价箱线图 通过箱线图分析二手房总价在各个区域的对比。 参照下面的提示补全缺失的代码: # 仿照上面的代码,按地区对二手房总价进行归类

import pandas as pd from pyecharts import options as opts from pyecharts.charts import Boxplot, Line, Grid # 读取数据 df = pd.read_excel('200马力拖拉机明细.xlsx') # 创建DataFrame df = pd.DataFrame({ 'FactoryName': df['FactoryName'], 'JiJXH': df['JiJXH'], 'sale': df['sale'] }) # 将FactoryName和JiJXH合并为一列 df['FactoryName-JiJXH'] = df['FactoryName'] + '-' + df['JiJXH'].astype(str) # 对FactoryName-JiJXH进行分组 grouped = df.groupby('FactoryName-JiJXH') # 绘制箱线图 box = Boxplot() box_data = [] for name, group in grouped: box_data.append([round(i, 2) for i in group['sale'].tolist()]) box.add_xaxis([name]) box.add_yaxis('', box.prepare_data(box_data), tooltip_opts=opts.TooltipOpts(trigger='axis', axis_pointer_type='cross')) box.set_global_opts( title_opts=opts.TitleOpts(title='Sale Boxplot', subtitle=''), xaxis_opts=opts.AxisOpts( axislabel_opts=opts.LabelOpts(interval=0, formatter='{value|换行}'.replace('换行', '\n')) ) ) box.set_series_opts(label_opts=opts.LabelOpts(is_show=False)) # 绘制折线图 line = Line() for name, group in grouped: line.add_xaxis([name]) line.add_yaxis('Median', [round(group['sale'].median(), 2)], label_opts=opts.LabelOpts(is_show=False)) line.set_global_opts( title_opts=opts.TitleOpts(title='Sale Median Line', subtitle=''), xaxis_opts=opts.AxisOpts( axislabel_opts=opts.LabelOpts(interval=0, formatter='{value|换行}'.replace('换行', '\n')) ) ) # 合并图表 grid = Grid( init_opts=opts.InitOpts( width='1400px', height='800px', page_title='Boxplot and Median Line', theme='white' ) ) grid.add(box, grid_opts=opts.GridOpts(pos_left='10%', pos_right='10%')) grid.add(line, grid_opts=opts.GridOpts(pos_left='10%', pos_right='10%')) grid.render('boxplot_and_line.html') 提示list index out of range

def median_target(var): temp = data[data[var].notnull()] temp = temp[[var, 'Outcome']].groupby(['Outcome'])[[var]].median().reset_index() return temp data.loc[(data['Outcome'] == 0 ) & (data['Insulin'].isnull()), 'Insulin'] = 102.5 data.loc[(data['Outcome'] == 1 ) & (data['Insulin'].isnull()), 'Insulin'] = 169.5 data.loc[(data['Outcome'] == 0 ) & (data['Glucose'].isnull()), 'Glucose'] = 107 data.loc[(data['Outcome'] == 1 ) & (data['Glucose'].isnull()), 'Glucose'] = 1 data.loc[(data['Outcome'] == 0 ) & (data['SkinThickness'].isnull()), 'SkinThickness'] = 27 data.loc[(data['Outcome'] == 1 ) & (data['SkinThickness'].isnull()), 'SkinThickness'] = 32 data.loc[(data['Outcome'] == 0 ) & (data['BloodPressure'].isnull()), 'BloodPressure'] = 70 data.loc[(data['Outcome'] == 1 ) & (data['BloodPressure'].isnull()), 'BloodPressure'] = 74.5 data.loc[(data['Outcome'] == 0 ) & (data['BMI'].isnull()), 'BMI'] = 30.1 data.loc[(data['Outcome'] == 1 ) & (data['BMI'].isnull()), 'BMI'] = 34.3 target_col = ["Outcome"] cat_cols = data.nunique()[data.nunique() < 12].keys().tolist() cat_cols = [x for x in cat_cols ] #numerical columns num_cols = [x for x in data.columns if x not in cat_cols + target_col] #Binary columns with 2 values bin_cols = data.nunique()[data.nunique() == 2].keys().tolist() #Columns more than 2 values multi_cols = [i for i in cat_cols if i not in bin_cols] #Label encoding Binary columns le = LabelEncoder() for i in bin_cols : data[i] = le.fit_transform(data[i]) #Duplicating columns for multi value columns data = pd.get_dummies(data = data,columns = multi_cols ) #Scaling Numerical columns std = StandardScaler() scaled = std.fit_transform(data[num_cols]) scaled = pd.DataFrame(scaled,columns=num_cols) #dropping original values merging scaled values for numerical columns df_data_og = data.copy() data = data.drop(columns = num_cols,axis = 1) data = data.merge(scaled,left_index=True,right_index=True,how = "left") # Def X and Y X = data.drop('Outcome', axis=1) y = data['Outcome'] X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, shuffle=True, random_state=1) y_train = to_categorical(y_train) y_test = to_categorical(y_test)

最新推荐

recommend-type

pandas大数据分析笔记.docx

* 删除所有小于 n 个非空值的行:`df.dropna(axis=1, thresh=n)` * 用 x 替换所有空值:`df.fillna(x)` 七、排序、筛选和分组 pandas 提供了多种方式来排序、筛选和分组数据,包括: * 将 col 列大于 0.5 的行...
recommend-type

Python计算IV值的示例讲解

iv = np.sum((N_0_group/N_0 - N_1_group/N_1) * np.log((N_0_group/N_0)/(N_1_group/N_1))) # 计算IV值 return iv def caliv_batch(df, Kvar, Yvar): df_Xvar = df.drop([Kvar, Yvar], axis=1) # 获取除了主键...
recommend-type

昆仑通态控温程序,MCGS通讯10块仪表,不需要用plc,直接触摸屏通讯各种仪表

昆仑通态控温程序,MCGS通讯10块仪表,不需要用plc,直接触摸屏通讯各种仪表
recommend-type

GitHub Classroom 创建的C语言双链表实验项目解析

资源摘要信息: "list_lab2-AquilesDiosT"是一个由GitHub Classroom创建的实验项目,该项目涉及到数据结构中链表的实现,特别是双链表(doble lista)的编程练习。实验的目标是通过编写C语言代码,实现一个双链表的数据结构,并通过编写对应的测试代码来验证实现的正确性。下面将详细介绍标题和描述中提及的知识点以及相关的C语言编程概念。 ### 知识点一:GitHub Classroom的使用 - **GitHub Classroom** 是一个教育工具,旨在帮助教师和学生通过GitHub管理作业和项目。它允许教师创建作业模板,自动为学生创建仓库,并提供了一个清晰的结构来提交和批改学生作业。在这个实验中,"list_lab2-AquilesDiosT"是由GitHub Classroom创建的项目。 ### 知识点二:实验室参数解析器和代码清单 - 实验参数解析器可能是指实验室中用于管理不同实验配置和参数设置的工具或脚本。 - "Antes de Comenzar"(在开始之前)可能是一个实验指南或说明,指示了实验的前提条件或准备工作。 - "实验室实务清单"可能是指实施实验所需遵循的步骤或注意事项列表。 ### 知识点三:C语言编程基础 - **C语言** 作为编程语言,是实验项目的核心,因此在描述中出现了"C"标签。 - **文件操作**:实验要求只可以操作`list.c`和`main.c`文件,这涉及到C语言对文件的操作和管理。 - **函数的调用**:`test`函数的使用意味着需要编写测试代码来验证实验结果。 - **调试技巧**:允许使用`printf`来调试代码,这是C语言程序员常用的一种简单而有效的调试方法。 ### 知识点四:数据结构的实现与应用 - **链表**:在C语言中实现链表需要对结构体(struct)和指针(pointer)有深刻的理解。链表是一种常见的数据结构,链表中的每个节点包含数据部分和指向下一个节点的指针。实验中要求实现的双链表,每个节点除了包含指向下一个节点的指针外,还包含一个指向前一个节点的指针,允许双向遍历。 ### 知识点五:程序结构设计 - **typedef struct Node Node;**:这是一个C语言中定义类型别名的语法,可以使得链表节点的声明更加清晰和简洁。 - **数据结构定义**:在`Node`结构体中,`void * data;`用来存储节点中的数据,而`Node * next;`用来指向下一个节点的地址。`void *`表示可以指向任何类型的数据,这提供了灵活性来存储不同类型的数据。 ### 知识点六:版本控制系统Git的使用 - **不允许使用git**:这是实验的特别要求,可能是为了让学生专注于学习数据结构的实现,而不涉及版本控制系统的使用。在实际工作中,使用Git等版本控制系统是非常重要的技能,它帮助开发者管理项目版本,协作开发等。 ### 知识点七:项目文件结构 - **文件命名**:`list_lab2-AquilesDiosT-main`表明这是实验项目中的主文件。在实际的文件系统中,通常会有多个文件来共同构成一个项目,如源代码文件、头文件和测试文件等。 总结而言,"list_lab2-AquilesDiosT"实验项目要求学生运用C语言编程知识,实现双链表的数据结构,并通过编写测试代码来验证实现的正确性。这个过程不仅考察了学生对C语言和数据结构的掌握程度,同时也涉及了软件开发中的基本调试方法和文件操作技能。虽然实验中禁止了Git的使用,但在现实中,版本控制的技能同样重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【三态RS锁存器CD4043的秘密】:从入门到精通的电路设计指南(附实际应用案例)

# 摘要 三态RS锁存器CD4043是一种具有三态逻辑工作模式的数字电子元件,广泛应用于信号缓冲、存储以及多路数据选择等场合。本文首先介绍了CD4043的基础知识和基本特性,然后深入探讨其工作原理和逻辑行为,紧接着阐述了如何在电路设计中实践运用CD4043,并提供了高级应用技巧和性能优化策略。最后,针对CD4043的故障诊断与排错进行了详细讨论,并通过综合案例分析,指出了设计挑战和未来发展趋势。本文旨在为电子工程师提供全面的CD4043应用指南,同时为相关领域的研究提供参考。 # 关键字 三态RS锁存器;CD4043;电路设计;信号缓冲;故障诊断;微控制器接口 参考资源链接:[CD4043
recommend-type

霍夫曼四元编码matlab

霍夫曼四元码(Huffman Coding)是一种基于频率最优的编码算法,常用于数据压缩中。在MATLAB中,你可以利用内置函数来生成霍夫曼树并创建对应的编码表。以下是简单的步骤: 1. **收集数据**:首先,你需要一个数据集,其中包含每个字符及其出现的频率。 2. **构建霍夫曼树**:使用`huffmandict`函数,输入字符数组和它们的频率,MATLAB会自动构建一棵霍夫曼树。例如: ```matlab char_freq = [freq1, freq2, ...]; % 字符频率向量 huffTree = huffmandict(char_freq);
recommend-type

MATLAB在AWS上的自动化部署与运行指南

资源摘要信息:"AWS上的MATLAB是MathWorks官方提供的参考架构,旨在简化用户在Amazon Web Services (AWS) 上部署和运行MATLAB的流程。该架构能够让用户自动执行创建和配置AWS基础设施的任务,并确保可以在AWS实例上顺利运行MATLAB软件。为了使用这个参考架构,用户需要拥有有效的MATLAB许可证,并且已经在AWS中建立了自己的账户。 具体的参考架构包括了分步指导,架构示意图以及一系列可以在AWS环境中执行的模板和脚本。这些资源为用户提供了详细的步骤说明,指导用户如何一步步设置和配置AWS环境,以便兼容和利用MATLAB的各种功能。这些模板和脚本是自动化的,减少了手动配置的复杂性和出错概率。 MathWorks公司是MATLAB软件的开发者,该公司提供了广泛的技术支持和咨询服务,致力于帮助用户解决在云端使用MATLAB时可能遇到的问题。除了MATLAB,MathWorks还开发了Simulink等其他科学计算软件,与MATLAB紧密集成,提供了模型设计、仿真和分析的功能。 MathWorks对云环境的支持不仅限于AWS,还包括其他公共云平台。用户可以通过访问MathWorks的官方网站了解更多信息,链接为www.mathworks.com/cloud.html#PublicClouds。在这个页面上,MathWorks提供了关于如何在不同云平台上使用MATLAB的详细信息和指导。 在AWS环境中,用户可以通过参考架构自动化的模板和脚本,快速完成以下任务: 1. 创建AWS资源:如EC2实例、EBS存储卷、VPC(虚拟私有云)和子网等。 2. 配置安全组和网络访问控制列表(ACLs),以确保符合安全最佳实践。 3. 安装和配置MATLAB及其相关产品,包括Parallel Computing Toolbox、MATLAB Parallel Server等,以便利用多核处理和集群计算。 4. 集成AWS服务,如Amazon S3用于存储,AWS Batch用于大规模批量处理,Amazon EC2 Spot Instances用于成本效益更高的计算任务。 此外,AWS上的MATLAB架构还包括了监控和日志记录的功能,让用户能够跟踪和分析运行状况,确保应用程序稳定运行。用户还可以根据自己的需求自定义和扩展这些模板和脚本。 在使用AWS上的MATLAB之前,用户需要了解MathWorks的许可协议,明确自己的许可证是否允许在云环境中使用MATLAB,并确保遵守相关法律法规。MathWorks提供了广泛的资源和支持,帮助用户快速上手,有效利用AWS资源,以及在云端部署和扩展MATLAB应用程序。 综上所述,AWS上的MATLAB参考架构是为希望在AWS云平台上部署MATLAB的用户提供的一种快速、简便的解决方案。它不仅减少了手动配置的复杂性,还为用户提供了广泛的资源和指导,以确保用户能够在云环境中高效、安全地使用MATLAB。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

铁路售票系统用例图:异常流处理的黄金法则

![铁路售票系统用例图:异常流处理的黄金法则](https://opengraph.githubassets.com/afac9d71167fe51e2e95e6b89ecf588c94077f4e2d4e82c217ba436f21dce30d/DarshanGH/Railway-Ticket-Booking-System) # 摘要 本文全面探讨了铁路售票系统的异常流处理问题,阐述了用例图在系统设计中的重要性及其绘制方法,同时分析了异常流的定义、设计原则、最佳实践及其在铁路售票系统中的应用。文章进一步深入到异常流识别、分类、处理流程设计以及用户界面处理的策略,确保异常情况下的系统稳定性和