# 循环调用绘图函数 for i in range(1, 15): filename = f'E:/应统案例大赛/附件1-股票交易数据/a{i}.xlsx' # 根据数据文件名字生成文件路径 df = pd.read_excel(filename) # 读取数据 plot_k_line(df) # 绘制K线图 plt.savefig(f'a{i}.jpg') # 保存图表 plt.show() # 显示图表为什么保存不了
时间: 2024-02-21 22:02:17 浏览: 123
根据你提供的代码,你是将每个股票的 K 线图绘制出来,并保存为对应的文件名。但是你在保存图表时使用了一个相对路径 'a{i}.jpg',这可能导致保存失败,因为 Python 解释器可能无法找到该路径。建议你使用绝对路径来保存文件,例如:
```
plt.savefig('E:/应统案例大赛/附件1-股票交易数据/a{i}.jpg')
```
这将确保文件保存在指定的路径下。如果你仍然遇到问题,请检查文件路径是否正确,以及是否有权限在该路径下保存文件。
相关问题
# 循环调用绘图函数 for i in range(1, 15): filename = f'E:/应统案例大赛/附件1-股票交易数据/a{i}.xlsx' # 根据数据文件名字生成文件路径 df = pd.read_excel(filename) # 读取数据 plot_k_line(df) # 绘制K线图 plt.savefig('E:/应统案例大赛/附件1-股票交易数据/a{i}.jpg') plt.show() # 显示图表 为什么只保存了一个图片
你的代码中使用了 f-string 来构造文件名,但是你在调用 `plt.savefig()` 函数时,文件名中的 f-string 没有被正确地格式化,因为你使用了单引号字符串而不是 f-string。你可以将单引号替换为双引号来解决这个问题,例如:
```
plt.savefig(f"E:/应统案例大赛/附件1-股票交易数据/a{i}.jpg")
```
这将确保文件名中的 f-string 被正确地格式化。如果你仍然只保存了一个图片,可能是由于你的代码中存在其他问题。你可以在循环中打印出每个数据框的名称和保存的文件名,以便进行调试。例如:
```
for i in range(1, 15):
filename = f'E:/应统案例大赛/附件1-股票交易数据/a{i}.xlsx'
df = pd.read_excel(filename)
print(f"Processing file {filename}...")
plot_k_line(df)
plt.savefig(f'E:/应统案例大赛/附件1-股票交易数据/a{i}.jpg')
plt.show()
```
这将在每次循环中打印出正在处理的文件名,以便你查看是否正确地处理了所有文件。
优化这个代码import xarray as xr import netCDF4 as nc import pandas as pd import numpy as np import datetime import matplotlib.pyplot as plt import cartopy.mpl.ticker as cticker import cartopy.crs as ccrs import cartopy.feature as cfeature ds = xr.open_dataset('C:/Users/cindy/Desktop/SP.nc', engine='netcdf4') # 读取原始数据 ds_temp = xr.open_dataset('C:/Users/cindy/Desktop/SP.nc') # 区域提取* south_asia = ds_temp.sel(latitude=slice(38, 28), longitude=slice(75, 103)) indian_ocean = ds_temp.sel(latitude=slice(5, -15), longitude=slice(60, 100)) # 高度插值 south_asia_200hpa = south_asia.t.interp(level=200) indian_ocean_200hpa = indian_ocean.t.interp(level=200) south_asia_400hpa = south_asia.t.interp(level=400) indian_ocean_400hpa = indian_ocean.t.interp(level=400) # 区域平均 TTP = south_asia_400hpa.mean(dim=('latitude', 'longitude'))#.values TTIO = indian_ocean_400hpa.mean(dim=('latitude', 'longitude'))# TTP_200hpa = south_asia_200hpa.mean(dim=('latitude', 'longitude')) TTIO_200hpa = indian_ocean_200hpa.mean(dim=('latitude', 'longitude')) tlup=(TTP-TTIO)-(TTP_200hpa-TTIO_200hpa)-(-5.367655815) # 定义画图区域和投影方式 fig = plt.figure(figsize=[10, 8]) ax = plt.axes(projection=ccrs.PlateCarree()) # 添加地图特征 ax.set_extent([60, 140, -15, 60], crs=ccrs.PlateCarree()) ax.add_feature(cfeature.COASTLINE.with_scale('50m'), linewidths=0.5) ax.add_feature(cfeature.LAND.with_scale('50m'), facecolor='lightgray') ax.add_feature(cfeature.OCEAN.with_scale('50m'), facecolor='white') # 画距平场 im = ax.contourf(TTP_200hpa, TTP, tlup, cmap='coolwarm', levels=np.arange(-4, 4.5, 0.5), extend='both') # 添加色标 cbar = plt.colorbar(im, ax=ax, shrink=0.8) cbar.set_label('Temperature anomaly (°C)') # 添加经纬度坐标轴标签 ax.set_xticks(np.arange(60, 105, 10), crs=ccrs.PlateCarree()) ax.set_yticks(np.arange(-10, 40, 10), crs=ccrs.PlateCarree()) lon_formatter = cticker.LongitudeFormatter() lat_formatter = cticker.LatitudeFormatter() ax.xaxis.set_major_formatter(lon_formatter) ax.yaxis.set_major_formatter(lat_formatter) # 添加标题和保存图片 plt.title('Temperature anomaly at 400hPa over South Asia and the Indian Ocean') plt.savefig('temperature_anomaly.png', dpi=300) plt.show()
1. 首先,可以将多个导入语句合并为一行,以提高代码的可读性。例如:
```
import xarray as xr, netCDF4 as nc, pandas as pd, numpy as np, datetime
import matplotlib.pyplot as plt
import cartopy.mpl.ticker as cticker, cartopy.crs as ccrs, cartopy.feature as cfeature
```
2. 可以在代码中删除不必要的变量,例如 `ds` 和 `ds_temp` 都是指向同一个文件的数据集,因此只需要保留一个即可。
3. 对于数据集的区域提取和高度插值操作,可以将它们合并成一个链式操作,以减少代码行数。例如:
```
south_asia = ds.sel(latitude=slice(38, 28), longitude=slice(75, 103)).t.interp(level=200)
indian_ocean = ds.sel(latitude=slice(5, -15), longitude=slice(60, 100)).t.interp(level=200)
```
4. 对于计算平均值的操作,可以使用 `reduce` 函数,以减少代码行数。例如:
```
TTP, TTIO = np.array([south_asia_400hpa, indian_ocean_400hpa]).reduce(lambda x, y: x.mean(dim=('latitude', 'longitude')), axis=0)
TTIO_200hpa = indian_ocean_200hpa.mean(dim=('latitude', 'longitude'))
```
5. 可以将一些常量定义为全局变量或者类变量,以方便后续使用。例如:
```
LEVEL = 400
SLICE_LATITUDE = slice(38, 28)
SLICE_LONGITUDE = slice(75, 103)
SLICE_IO_LATITUDE = slice(5, -15)
SLICE_IO_LONGITUDE = slice(60, 100)
TITLE = 'Temperature anomaly at {}hPa over South Asia and the Indian Ocean'.format(LEVEL)
```
6. 可以将绘图的代码封装为一个函数,以提高代码的可读性和复用性。例如:
```
def plot_temperature_anomaly(TTP, TTIO, TTP_200hpa, TTIO_200hpa, tlup):
fig = plt.figure(figsize=[10, 8])
ax = plt.axes(projection=ccrs.PlateCarree())
ax.set_extent([60, 140, -15, 60], crs=ccrs.PlateCarree())
ax.add_feature(cfeature.COASTLINE.with_scale('50m'), linewidths=0.5)
ax.add_feature(cfeature.LAND.with_scale('50m'), facecolor='lightgray')
ax.add_feature(cfeature.OCEAN.with_scale('50m'), facecolor='white')
im = ax.contourf(TTP_200hpa, TTP, tlup, cmap='coolwarm', levels=np.arange(-4, 4.5, 0.5), extend='both')
cbar = plt.colorbar(im, ax=ax, shrink=0.8)
cbar.set_label('Temperature anomaly (°C)')
ax.set_xticks(np.arange(60, 105, 10), crs=ccrs.PlateCarree())
ax.set_yticks(np.arange(-10, 40, 10), crs=ccrs.PlateCarree())
lon_formatter = cticker.LongitudeFormatter()
lat_formatter = cticker.LatitudeFormatter()
ax.xaxis.set_major_formatter(lon_formatter)
ax.yaxis.set_major_formatter(lat_formatter)
plt.title(TITLE)
plt.savefig('temperature_anomaly.png', dpi=300)
plt.show()
```
7. 最后,可以将所有操作封装为一个函数,以方便调用。例如:
```
def calculate_and_plot_temperature_anomaly(filename):
ds = xr.open_dataset(filename)
south_asia = ds.sel(latitude=SLICE_LATITUDE, longitude=SLICE_LONGITUDE).t.interp(level=LEVEL)
indian_ocean = ds.sel(latitude=SLICE_IO_LATITUDE, longitude=SLICE_IO_LONGITUDE).t.interp(level=LEVEL)
south_asia_200hpa = south_asia.t.interp(level=200)
indian_ocean_200hpa = indian_ocean.t.interp(level=200)
TTP, TTIO = np.array([south_asia, indian_ocean]).reduce(lambda x, y: x.mean(dim=('latitude', 'longitude')), axis=0)
TTP_200hpa = south_asia_200hpa.mean(dim=('latitude', 'longitude'))
TTIO_200hpa = indian_ocean_200hpa.mean(dim=('latitude', 'longitude'))
tlup=(TTP-TTIO)-(TTP_200hpa-TTIO_200hpa)-(-5.367655815)
plot_temperature_anomaly(TTP, TTIO, TTP_200hpa, TTIO_200hpa, tlup)
```
这样,我们就可以通过调用 `calculate_and_plot_temperature_anomaly(filename)` 函数来计算和绘制温度距平图了。
阅读全文