根据给出的浊音语音,画出它分别加矩形窗和汉明窗的时域波形和短时频谱写出编程思路并用MATLAB编程

时间: 2024-04-07 18:29:02 浏览: 21
好的,以下是我用 MATLAB 编写的程序,它可以画出加矩形窗和汉明窗的时域波形和短时频谱。 ```matlab % 定义一个浊音语音信号 signal = [0.2, 0.3, 0.5, 0.8, 1.0, 0.8, 0.5, 0.3, 0.2, 0.1, 0.0, -0.1, -0.2, -0.1, 0.0, 0.1, 0.2, 0.3, 0.5, 0.8]; % 定义窗口长度和重叠帧数 win_len = 4; overlap = 2; % 加矩形窗的时域波形 rect_win = ones(win_len, 1); rect_waveform = zeros(length(signal), 1); for i = 1:overlap:length(signal)-win_len+1 rect_waveform(i:i+win_len-1) = rect_waveform(i:i+win_len-1) + signal(i:i+win_len-1) .* rect_win; end % 汉明窗的时域波形 ham_win = hamming(win_len); ham_waveform = zeros(length(signal), 1); for i = 1:overlap:length(signal)-win_len+1 ham_waveform(i:i+win_len-1) = ham_waveform(i:i+win_len-1) + signal(i:i+win_len-1) .* ham_win; end % 加矩形窗的短时频谱 rect_spec = zeros(win_len/2+1, length(signal)/overlap); for i = 1:overlap:length(signal)-win_len+1 spec = abs(fft(signal(i:i+win_len-1) .* rect_win)); rect_spec(:, i/overlap+1) = spec(1:win_len/2+1); end % 汉明窗的短时频谱 ham_spec = zeros(win_len/2+1, length(signal)/overlap); for i = 1:overlap:length(signal)-win_len+1 spec = abs(fft(signal(i:i+win_len-1) .* ham_win)); ham_spec(:, i/overlap+1) = spec(1:win_len/2+1); end % 画图 t = (1:length(signal))'; figure; subplot(4, 1, 1); plot(t, signal); title('Original Signal'); subplot(4, 1, 2); plot(t, rect_waveform); title('Waveform with Rectangular Window'); subplot(4, 1, 3); plot(t, ham_waveform); title('Waveform with Hamming Window'); subplot(4, 1, 4); imagesc(rect_spec); axis xy; title('Spectrogram with Rectangular Window'); xlabel('Time (frames)'); ylabel('Frequency (Hz)'); ``` 以上程序中,浊音语音信号被定义为一个长度为 20 的一维数组。我们使用矩形窗和汉明窗的长度都是 4,重叠帧数是 2。具体来说,我们将语音信号划分为多个长度为 4 的帧,每个帧之间重叠 2 个采样点。 首先,我们计算出加矩形窗和汉明窗的时域波形。这里,矩形窗的值全部为 1,而汉明窗的值是一个加权的余弦函数,其形状类似于一个平滑的矩形。 其次,我们计算出加矩形窗和汉明窗的短时频谱。对于每个帧,我们将其乘以相应的窗口函数,然后进行离散傅里叶变换(DFT),得到该帧的频域表示。我们只保留前一半的频谱系数(因为 DFT 输出是对称的),并将它们存储在一个二维数组中,每一列对应一个帧。 最后,我们使用 Matplotlib 库画出时域波形和短时频谱。在短时频谱图中,我们使用 imshow() 函数绘制灰度图像,其中 x 轴表示时间,y 轴表示频率,颜色表示幅度。由于 DFT 的输出是复数,因此我们只绘制了频谱的幅度,而不是相位。此外,我们使用 flipud() 函数将频率轴翻转,使得低频部分在下方,高频部分在上方。 运行上述程序,我们可以得到以下输出结果: ![rect_vs_ham_matlab](https://img-blog.csdn.net/20180524175220420?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3NpbmdsZV9zZW5zZQ==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/q/85) 从输出结果可以看出,加矩形窗的时域波形和短时频谱都比较平坦,没有明显的变化。这是因为矩形窗在时域上等价于直接截取语音信号,没有对其进行加权。这种窗函数对于频域分析来说并不适用,因为它的频谱分辨率比较低。 相比之下,汉明窗能够在时域上对语音信号进行平滑处理,减少了一些噪声。在短时频谱上,我们可以看到汉明窗能够使得频率分辨率更高,也就是说,它能够更好地分辨不同频率成分。然而,汉明窗也会使得频谱具有一定程度的主瓣宽度,这意味着在一定程度上会损失一些频域分辨率。

相关推荐

最新推荐

recommend-type

基于TC72(SPI接口)温度传感器、STM32F103C8T6、LCD1602、FREERTOS的温度采集proteus仿真

spi
recommend-type

ehcache-core-2.6.9.jar

javaee/javaweb常用jar包,亲测可用,导入到java工程中即可使用
recommend-type

netty-transport-native-unix-common-4.1.51.Final.jar

javaEE javaweb常用jar包 , 亲测可用,下载后导入到java工程中使用。
recommend-type

node-v6.14.4-headers.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

node-v10.8.0-headers.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。