利用sklearn库中的方法实现Apriori算法
时间: 2024-03-09 20:45:40 浏览: 130
对不起,我之前的回答有误,sklearn确实没有现成的Apriori算法实现。需要使用其他库或自己实现。以下是一个常用的Apriori算法实现示例代码,仅供参考:
```python
import numpy as np
def load_dataset():
"""
加载数据集
"""
return [['milk', 'bread', 'eggs'],
['milk', 'bread'],
['milk', 'diaper', 'beer', 'eggs'],
['bread', 'diaper', 'eggs'],
['bread', 'diaper', 'beer']]
def create_c1(dataset):
"""
创建初始项集C1
"""
c1 = []
for transaction in dataset:
for item in transaction:
if not [item] in c1:
c1.append([item])
return list(map(frozenset, c1))
def scan_d(dataset, ck, min_support):
"""
扫描数据集,筛选出满足最小支持度的项集
"""
item_count = {}
for transaction in dataset:
for item in ck:
if item.issubset(transaction):
if item not in item_count:
item_count[item] = 1
else:
item_count[item] += 1
num_items = float(len(dataset))
ret_list = []
support_data = {}
for key in item_count:
support = item_count[key] / num_items
if support >= min_support:
ret_list.append(key)
support_data[key] = support
return ret_list, support_data
def apriori_gen(lk, k):
"""
根据频繁(k-1)项集生成候选项集Ck
"""
ret_list = []
len_lk = len(lk)
for i in range(len_lk):
for j in range(i+1, len_lk):
l1 = list(lk[i])[:k-2]
l2 = list(lk[j])[:k-2]
l1.sort()
l2.sort()
if l1 == l2:
ret_list.append(lk[i] | lk[j])
return ret_list
def apriori(dataset, min_support=0.5):
"""
Apriori算法
"""
dataset = list(map(set, dataset))
c1 = create_c1(dataset)
d = list(map(set, dataset))
l1, support_data = scan_d(d, c1, min_support)
l = [l1]
k = 2
while len(l[k-2]) > 0:
ck = apriori_gen(l[k-2], k)
lk, supk = scan_d(d, ck, min_support)
support_data.update(supk)
l.append(lk)
k += 1
return l, support_data
# 测试代码
dataset = load_dataset()
L, support_data = apriori(dataset, min_support=0.6)
print('频繁项集:', L)
print('支持度信息:', support_data)
```
以上代码实现了Apriori算法的基本流程,包括创建初始项集、扫描数据集筛选频繁项集、根据频繁(k-1)项集生成候选项集Ck、迭代寻找频繁项集等步骤。
阅读全文