离散中k3,3和k5图是什么
时间: 2024-03-14 18:43:22 浏览: 2613
k3,3和k5是两种常见的离散数学中的图。
k3,3是指一个有6个顶点、9条边,且每个顶点的度数都为3的完全二分图。这个图通常可以表示为两组互相连通的三个节点的集合,其中一组节点与另一组节点之间都有连边。k3,3的形状如下:
```
* --- * --- *
/|\ /|\ /|\
/ | \ / | \ / | \
*--*--*--*--*--*--*
\ | / \ | / \ | /
\|/ \|/ \|/
* --- * --- *
```
k5是指一个有5个顶点、10条边,且每个顶点的度数都为4的完全图。这个图中的任意两个节点之间都有连边。k5的形状如下:
```
* --- *
/|\ /|\
/ | \ / | \
*--*--*--*--*
\ | / \ | /
\|/ \|/
* --- *
```
这两种图在离散数学中经常被用来研究图的特性和性质,例如图的平面性、可染色性等。
相关问题
七阶龙格库塔法离散化Lorenz超混沌系统
Lorenz超混沌系统是一类三维非线性动力学系统,具有强混沌特性。在数值模拟中,为了解决微分方程组的数值解,需要采用数值方法进行离散化处理。其中,七阶龙格库塔法是一种高精度的数值方法,可以有效地求解非线性微分方程组。
七阶龙格库塔法的基本思路是将微分方程组中的每个变量的变化量按照一定的权重进行加权求和,从而得到每个变量在下一个时间步长的取值。具体而言,七阶龙格库塔法的计算公式如下:
k1 = h*f(tn, yn)
k2 = h*f(tn + h/2, yn + k1/2)
k3 = h*f(tn + h/2, yn + k2/2)
k4 = h*f(tn + h/2, yn + k3/2)
k5 = h*f(tn + h, yn + k4)
k6 = h*f(tn + h/2, yn + (k1 + 2*k2 + 2*k3 + k4)/6)
k7 = h*f(tn + h/2, yn + (k1 + 4*k2 + k4)/6)
yn+1 = yn + (k1 + 6*k2 + 6*k3 + 6*k4 + k5 + 3*k6 + 3*k7)/20
其中,h为时间步长,tn为当前时间,yn为当前状态,f(tn, yn)为微分方程组的右端项。
对于Lorenz超混沌系统来说,其动力学方程组为:
dx/dt = σ(y - x)
dy/dt = x(ρ - z) - y
dz/dt = xy - βz
其中,x、y、z为系统状态变量,σ、ρ、β为常数参数。通过将该方程组代入七阶龙格库塔法的计算公式中,可以得到Lorenz超混沌系统的数值解。
阅读全文
相关推荐

















