// Job termination // Free the store: user actions, physics_list and detector_description are // owned and deleted by the run manager, so they should not be deleted // in the main() program ! delete visManager; delete runManager;
时间: 2024-03-31 16:35:34 浏览: 141
这段代码用于结束程序并释放内存。在 Geant4 中,用户自定义的动作、物理列表和探测器描述等对象都由运行管理器(`G4RunManager`)来管理和释放,因此在程序结束前不应该手动删除这些对象。
在这段代码中,我们首先使用 `delete` 语句释放可视化管理器(`G4VisManager`)的内存,然后再使用 `delete` 语句释放运行管理器(`G4RunManager`)的内存。由于在运行管理器的析构函数中已经自动释放了用户自定义的动作、物理列表和探测器描述等对象,因此在这里不需要再次手动删除它们。
总之,这段代码的作用是结束程序并释放内存,以避免内存泄漏和资源浪费。
相关问题
ubuntu16.04ros编译时报错home/bobac3/ros_workspace/src/multipoint_navigation/src/multipoint_nav.cpp:20:17: warning: non-static data member initializers only available with -std=c++11 or -std=gnu++11 int cycle = 1; //巡航次数 ^ /home/bobac3/ros_workspace/src/multipoint_navigation/src/multipoint_nav.cpp: In member function ‘void Multipoint_Nav::move()’: /home/bobac3/ros_workspace/src/multipoint_navigation/src/multipoint_nav.cpp:90:26: error: ‘goal’ does not name a type for(auto goal:pose) //遍历导航点列表 ^ In file included from /opt/ros/kinetic/include/ros/ros.h:40:0, from /opt/ros/kinetic/include/actionlib/client/simple_action_client.h:45, from /home/bobac3/ros_workspace/src/multipoint_navigation/src/multipoint_nav.cpp:1: /opt/ros/kinetic/include/ros/console.h:373:3: error: expected ‘;’ before ‘do’ do \ ^ /opt/ros/kinetic/include/ros/console.h:561:35: note: in expansion of macro ‘ROS_LOG_COND’ #define ROS_LOG(level, name, ...) ROS_LOG_COND(true, level, name, __VA_ARGS__) ^ /opt/ros/kinetic/include/rosconsole/macros_generated.h:110:23: note: in expansion of macro ‘ROS_LOG’ #define ROS_INFO(...) ROS_LOG(::ros::console::levels::Info, ROSCONSOLE_DEFAULT_ ^ /home/bobac3/ros_workspace/src/multipoint_navigation/src/multipoint_nav.cpp:152:17: note: in expansion of macro ‘ROS_INFO’ ROS_INFO("------------------loop ( %d ) termination!----------- ^ /opt/ros/kinetic/include/ros/console.h:373:3: error: expected primary-expression before ‘do’ do \ ^ /opt/ros/kinetic/include/ros/console.h:561:35: note: in expansion of macro ‘ROS_LOG_COND’ #define ROS_LOG(level, name, ...) ROS_LOG_COND(true, level, name, __VA_ARGS__) ^ /opt/ros/kinetic/include/rosconsole/macros_generated.h:110:23: note: in expansion of macro ‘ROS_LOG’ #define ROS_INFO(...) ROS_LOG(::ros::console::levels::Info, ROSCONSOLE_DEFAULT_
这个错误的原因是代码中使用了 C++11 的特性,但是编译时没有开启 C++11 标准。你需要在编译时加上选项 -std=c++11 或者 -std=gnu++11 来开启 C++11 标准。
具体来说,在你的 CMakeLists.txt 文件中添加以下行:
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
这将会把 C++11 标准的编译选项加入到编译命令中,从而解决这个问题。
另外,还有一个错误是 'goal' does not name a type,这可能是因为你没有在代码中定义 goal 变量的类型。你需要检查一下代码中是否有定义 goal 变量的类型,并且确保它在使用之前已经被定义。
Create a function pixel_flip(lst, orig_lst, budget, results, i=0) that uses recursion to generate all possible new unique images from the input orig_lst, following these rules: • The input lst is the current list being processed. Initially, this will be the same as orig_lst which is the original flattened image. • The input budget represents the number of pixels that can still be flipped. When the budget reaches 0, no more pixels can be flipped. • The input results is a list of resulting flattened images with flipped pixels. Initially, this will be an empty list. • The input i represents the index of the pixel being processed, by default set to 0, which is used to drive the recursive function towards its base case (i.e., initially starting from i=0). At termination of the function, the argument results should contain all possibilities of the input orig_lst by only flipping pixels from 0 to 1 under both the budget and the adjacency constraints. fill code at #TODO def pixel_flip(lst: list[int], orig_lst: list[int], budget: int, results: list, i: int = 0) -> None: """ Uses recursion to generate all possibilities of flipped arrays where a pixel was a 0 and there was an adjacent pixel with the value of 1. :param lst: 1D list of integers representing a flattened image . :param orig_lst: 1D list of integers representing the original flattened image. :param budget: Integer representing the number of pixels that can be flipped . :param results: List of 1D lists of integers representing all possibilities of flipped arrays, initially empty. :param i: Integer representing the index of the pixel in question. :return: None. """ #TODO def check_adjacent_for_one(flat_image: list[int], flat_pixel: int) -> bool: """ Checks if a pixel has an adjacent pixel with the value of 1. :param flat_image: 1D list of integers representing a flattened image . :param flat_pixel: Integer representing the index of the pixel in question. :return: Boolean. """ #TODO
Here's the code for the pixel_flip function and check_adjacent_for_one helper function:
```
def pixel_flip(lst: list[int], orig_lst: list[int], budget: int, results: list, i: int = 0) -> None:
"""
Uses recursion to generate all possibilities of flipped arrays where
a pixel was a 0 and there was an adjacent pixel with the value of 1.
:param lst: 1D list of integers representing a flattened image.
:param orig_lst: 1D list of integers representing the original flattened image.
:param budget: Integer representing the number of pixels that can be flipped.
:param results: List of 1D lists of integers representing all possibilities of flipped arrays, initially empty.
:param i: Integer representing the index of the pixel in question.
:return: None.
"""
if budget == 0:
# Base case: no more pixels can be flipped
results.append(lst)
return
if i >= len(lst):
# Base case: all pixels have been checked
return
if lst[i] == 0 and check_adjacent_for_one(orig_lst, i):
# Flip the current pixel and recurse with a lower budget
new_lst = lst.copy()
new_lst[i] = 1
pixel_flip(new_lst, orig_lst, budget - 1, results, i + 1)
# Recurse without flipping the current pixel
pixel_flip(lst, orig_lst, budget, results, i + 1)
def check_adjacent_for_one(flat_image: list[int], flat_pixel: int) -> bool:
"""
Checks if a pixel has an adjacent pixel with the value of 1.
:param flat_image: 1D list of integers representing a flattened image.
:param flat_pixel: Integer representing the index of the pixel in question.
:return: Boolean.
"""
row_size = int(len(flat_image)**0.5)
row = flat_pixel // row_size
col = flat_pixel % row_size
if row > 0 and flat_image[(row-1)*row_size+col] == 1:
return True
if row < row_size-1 and flat_image[(row+1)*row_size+col] == 1:
return True
if col > 0 and flat_image[row*row_size+(col-1)] == 1:
return True
if col < row_size-1 and flat_image[row*row_size+(col+1)] == 1:
return True
return False
```
The pixel_flip function takes in the current list being processed, orig_lst which is the original flattened image, budget representing the number of pixels that can still be flipped, results which is initially an empty list of resulting flattened images with flipped pixels, and i representing the index of the pixel being processed.
The function uses recursion to generate all possibilities of flipped arrays where a pixel was a 0 and there was an adjacent pixel with the value of 1. It first checks if the budget is 0 or if all pixels have been checked, and returns accordingly. If the current pixel is 0 and has an adjacent pixel with the value of 1, it flips the current pixel and recurses with a lower budget. Otherwise, it recurses without flipping the current pixel.
The check_adjacent_for_one helper function takes in the flattened image and the index of the pixel in question, and checks if the pixel has an adjacent pixel with the value of 1. It calculates the row and column of the pixel using integer division and modulus, and checks if the adjacent pixels in the vertical and horizontal directions have the value of 1. If any of the adjacent pixels have the value of 1, it returns True, otherwise it returns False.
阅读全文