用python计算原始头像的 高斯差分金字塔
时间: 2023-07-12 21:33:54 浏览: 160
计算原始头像的高斯差分金字塔,需要使用Python的OpenCV库。下面是代码示例:
```python
import cv2
import numpy as np
# 读取原始头像
img = cv2.imread('avatar.jpg')
# 构建高斯金字塔
gaussian_pyramid = [img]
for i in range(5):
blurred = cv2.pyrDown(gaussian_pyramid[-1])
gaussian_pyramid.append(blurred)
# 构建高斯差分金字塔
laplacian_pyramid = [gaussian_pyramid[-1]]
for i in range(4, 0, -1):
size = (gaussian_pyramid[i - 1].shape[1], gaussian_pyramid[i - 1].shape[0])
gaussian_expanded = cv2.pyrUp(gaussian_pyramid[i], dstsize=size)
laplacian = cv2.subtract(gaussian_pyramid[i - 1], gaussian_expanded)
laplacian_pyramid.append(laplacian)
# 显示高斯差分金字塔
for i, laplacian in enumerate(laplacian_pyramid):
cv2.imshow('Laplacian Level {}'.format(i), laplacian)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
代码中,我们首先读取原始头像,并使用`cv2.pyrDown()`函数构建高斯金字塔。然后,我们使用`cv2.pyrUp()`函数将高斯金字塔的每一层上采样并进行高斯滤波,得到一个更大的图像。接着,我们使用`cv2.subtract()`函数计算高斯金字塔上一层和上采样后的图像之间的差值,构建高斯差分金字塔。最后,我们使用`cv2.imshow()`函数显示每一层的高斯差分图像。
阅读全文