利用Python和OpenCV分别计算原始图像的高斯金字塔,计算原始图像的高斯差分金字塔(DoG),计算原始图像的拉普拉斯金字塔(LoG),分别给出三个代码
时间: 2024-03-09 14:47:01 浏览: 84
好的,以下是三个代码实现:
1. 计算高斯金字塔
```python
import cv2
# 读取原始图像
img = cv2.imread("image.png")
# 定义高斯金字塔层数和尺度
num_octaves = 4
num_scales = 5
# 计算高斯金字塔
gaussian_pyramid = []
k = pow(2, 1/num_scales)
for i in range(num_octaves):
octave = []
for j in range(num_scales):
if i == 0 and j == 0:
octave.append(img)
elif j == 0:
pre_img = gaussian_pyramid[-1][-3]
cur_img = cv2.pyrDown(pre_img)
octave.append(cur_img)
else:
pre_img = octave[-1]
cur_img = cv2.GaussianBlur(pre_img, (0, 0), sigmaX=k**j, sigmaY=k**j)
octave.append(cur_img)
gaussian_pyramid.append(octave)
```
2. 计算高斯差分金字塔(DoG)
```python
# 定义高斯差分金字塔层数和尺度
num_octaves = 4
num_scales = 5
# 计算高斯差分金字塔
dog_pyramid = []
for octave in gaussian_pyramid:
dog = []
for i in range(num_scales-1):
cur_img = octave[i+1] - octave[i]
dog.append(cur_img)
dog_pyramid.append(dog)
```
3. 计算拉普拉斯金字塔(LoG)
```python
# 定义拉普拉斯金字塔层数和尺度
num_octaves = 4
num_scales = 5
# 计算拉普拉斯金字塔
laplacian_pyramid = []
for octave in gaussian_pyramid:
laplacian = []
for i in range(num_scales-1):
cur_img = cv2.subtract(octave[i], cv2.pyrUp(octave[i+1]))
laplacian.append(cur_img)
laplacian.append(octave[-1])
laplacian_pyramid.append(laplacian)
```
阅读全文
相关推荐
















