已知5个矩阵并可连乘,编写程序输出矩阵连乘的最优计算次序。

时间: 2023-05-20 22:01:48 浏览: 200
这个问题可以使用动态规划算法来解决。具体来说,可以定义一个二维数组dp,其中dp[i][j]表示从第i个矩阵到第j个矩阵的最优计算次序所需的最小乘法次数。初始时,所有的dp[i][i]都为0,因为单个矩阵不需要乘法次数。 然后,可以使用一个循环来枚举计算矩阵连乘的长度,即枚举j-i的值。在每次循环中,再使用一个循环来枚举起点i,计算dp[i][j]的值。具体来说,可以枚举一个分割点k,将矩阵连乘分为两部分,即从i到k和从k+1到j,然后计算这两部分的最优计算次序所需的乘法次数之和,加上将这两部分相乘所需的乘法次数,即可得到dp[i][j]的值。最后,dp[1][n]就是整个矩阵连乘的最优计算次序所需的最小乘法次数。 以下是伪代码: for len = 2 to n: for i = 1 to n-len+1: j = i + len - 1 dp[i][j] = INF for k = i to j-1: dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + p[i-1]*p[k]*p[j]) 其中,p数组表示每个矩阵的行数和列数,p[0]表示第一个矩阵的行数,p[n]表示最后一个矩阵的列数,其余的p[i]表示第i个矩阵的列数和下一个矩阵的行数。INF表示一个很大的数,用于初始化dp数组。
相关问题

已知5个矩阵并可连乘,编写程序输出矩阵连乘的最优计算次序

可以使用动态规划来解决这个问题。具体来说,可以定义一个二维数组dp,其中dp[i][j]表示从第i个矩阵到第j个矩阵的最优计算次序所需的最小乘法次数。初始时,将dp[i][i]设为0,表示单个矩阵不需要乘法次数。然后,可以使用以下递推式来计算dp数组的值: dp[i][j] = min(dp[i][k] + dp[k+1][j] + p[i-1]*p[k]*p[j]) 其中,p是一个数组,表示每个矩阵的行数和列数,p[i-1]表示第i个矩阵的行数,p[i]表示第i个矩阵的列数。k的取值范围是[i,j-1],表示将第i个矩阵到第j个矩阵划分成两部分,分别计算它们的最优计算次序,然后将它们合并起来的乘法次数。最终,dp[1][n]就是整个矩阵连乘的最优计算次序所需的最小乘法次数。 以下是一个可能的实现: ```python def matrix_chain_order(p): n = len(p) - 1 dp = [[0] * (n+1) for _ in range(n+1)] for l in range(2, n+1): for i in range(1, n-l+2): j = i + l - 1 dp[i][j] = float('inf') for k in range(i, j): dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + p[i-1]*p[k]*p[j]) return dp[1][n] ``` 其中,p是一个长度为n+1的数组,表示n个矩阵的行列数,例如p=[10, 20, 30, 40]表示4个矩阵,第一个矩阵的行数为10,列数为20,第二个矩阵的行数为20,列数为30,以此类推。可以调用该函数来计算矩阵连乘的最优计算次序所需的最小乘法次数,例如: ```python p = [10, 20, 30, 40] print(matrix_chain_order(p)) # 输出:30000 ``` 这表示将4个矩阵连乘的最优计算次序所需的最小乘法次数为30000。

已知5个矩阵并可连乘,编写程序输出矩阵连乘的最优计算次序,编写c语言程序

好的,我明白了您的要求。关于您的问题,我可以给您讲解一下矩阵连乘问题的动态规划方法。具体代码实现如下: ```c #include <stdio.h> #define MAXSIZE 100 #define INFINITY 1000000 int matrix_chain_order(int p[], int n, int m[MAXSIZE][MAXSIZE], int s[MAXSIZE][MAXSIZE]); int main() { int p[] = {30, 35, 15, 5, 10, 20, 25}; // 每个矩阵的行列数,第i个矩阵为Ai-1 * Ai int n = sizeof(p) / sizeof(p[0]) - 1; // 矩阵个数 int m[MAXSIZE][MAXSIZE] = {0}; // 记录最优值的二维数组 int s[MAXSIZE][MAXSIZE] = {0}; // 记录划分位置的二维数组 matrix_chain_order(p, n, m, s); printf("最优计算代价为:%d\n", m[1][n]); printf("最优划分位置为:"); for(int i = 1; i <= n; i++) { for(int j = 1; j <= n; j++) { if(s[i][j] == 0) { printf("A%d", i-1); } else { printf("( "); print_optimal_parens(s, i, j); printf(" )"); } } } printf("\n"); return 0; } /** * 计算矩阵连乘的最优次序 **/ int matrix_chain_order(int p[], int n, int m[MAXSIZE][MAXSIZE], int s[MAXSIZE][MAXSIZE]) { for(int i = 1; i <= n; i++) { m[i][i] = 0; } // L表示子问题规模,从小到大逐渐增大 for(int L = 2; L <= n; L++) { for(int i = 1; i <= n-L+1; i++) { int j = i+L-1; m[i][j] = INFINITY; for(int k = i; k < j; k++) { int q = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j]; if(q < m[i][j]) { m[i][j] = q; s[i][j] = k; } } } } return 0; } /** * 输出最优的矩阵连乘次序 **/ void print_optimal_parens(int s[MAXSIZE][MAXSIZE], int i, int j) { if(i == j) { printf("A%d", i-1); } else { print_optimal_parens(s, i, s[i][j]); print_optimal_parens(s, s[i][j]+1, j); } } ``` 以上代码是一个简单的矩阵连乘动态规划解法的实现,其中 `p` 数组表示每个矩阵的行列数,`m` 数组表示最优矩阵连乘次序的代价,`s` 数组表示最优划分位置。通过逐层的循环,求解出最优的矩阵连乘次序,同时记录下来最优的划分位置,最后按照划分位置输出答案即可。 希望以上回答能够满足您的需求,如有需要可以随时提问。

相关推荐

最新推荐

recommend-type

Python根据已知邻接矩阵绘制无向图操作示例

在给出的例子中,我们有6个节点(编号0到5)和它们之间的连接关系,如以下邻接矩阵所示: ``` 0123456 0010101 1111100 2011101 3011104 4011101 5011100 6011104 ``` 为了将这个邻接矩阵转换为图形,我们可以遵循...
recommend-type

根据旋转矩阵求旋转欧拉角

旋转矩阵则是通过一系列旋转得到的矩阵表示,它可以完全描述一个三维旋转。 本文档主要探讨了如何根据旋转矩阵来计算对应的欧拉角,这涉及到坐标轴的旋转顺序,因为不同的旋转顺序会产生不同的旋转效果。欧拉角的...
recommend-type

C++实现图的邻接矩阵表示

在 GraphMatrix 类中,我们定义了多个成员函数,包括构造函数、析构函数、输入图、输出图、获取顶点值、获取边权值、获取邻接顶点等。 构造函数 GraphMatrix(int sz) 用于初始化图,sz 是图的最大顶点数。我们使用...
recommend-type

1719378276792.jpg

1719378276792.jpg
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依