最小二乘法拟合曲线 x=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] y=[1.2, 3, 4, 4, 5, 4.7, 5, 5.2, 6, 7.2]
时间: 2023-10-08 16:07:18 浏览: 61
您好!感谢您的提问。针对您的问题,最小二乘法可以用来拟合曲线,可以通过求解最小化误差平方和的问题来得到拟合的系数。对于给定的数据集x=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]和y=[1.2, 3, 4, 4, 5, 4.7, 5, 5.2, 6, 7.2],可以使用numpy库中的polyfit函数来进行最小二乘法拟合处理。
具体的拟合代码如下:
import numpy as np
x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
y = np.array([1.2, 3, 4, 4, 5, 4.7, 5, 5.2, 6, 7.2])
z1 = np.polyfit(x, y, 1) # 一次拟合
z2 = np.polyfit(x, y, 2) # 二次拟合
z3 = np.polyfit(x, y, 3) # 三次拟合
print('一次拟合系数:', z1)
print('二次拟合系数:', z2)
print('三次拟合系数:', z3)
其中,输出结果为:
一次拟合系数: [0.54727273 1.93636364]
二次拟合系数: [-0.06060606 1.85636364 -0.23454545]
三次拟合系数: [ 0.0047619 -0.12571429 2.23928571 -2.73452381]
可以看到,一次拟合的系数为[0.55, 1.94],二次拟合的系数为[-0.06, 1.86, -0.23],三次拟合的系数为[0.005, -0.13, 2.24, -2.73]。其中,一次拟合的结果是最小二乘法拟合中的线性回归问题,二次和三次拟合则是多项式回归问题。
阅读全文