python机器学习算法利用训练集数据预测股票未来的开盘价,收盘价,最高价,最低价及成交量。模型评价指标使用R2、MAE和MSE。代码
时间: 2024-02-25 16:53:24 浏览: 115
好的,这是一个比较复杂的问题,需要涉及到数据预处理、模型训练和评价等多个方面。我会尽可能详细地回答你的问题,但由于篇幅限制,可能无法涵盖所有细节。接下来,我会分步骤给出实现代码,希望对你有所帮助。
1. 数据预处理
首先,我们需要获取股票历史数据,并进行数据预处理。具体步骤如下:
- 导入相关库和数据文件
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
data = pd.read_csv('stock_data.csv')
```
- 查看数据信息,处理缺失值
```python
print(data.info())
data = data.dropna() # 删除缺失值
```
- 提取特征和目标变量
```python
X = data.drop(['Date', 'Open', 'Close', 'High', 'Low', 'Volume'], axis=1)
y = data[['Open', 'Close', 'High', 'Low', 'Volume']]
```
- 划分训练集和测试集,并进行标准化处理
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```
2. 模型训练
接下来,我们可以使用机器学习算法来训练模型。在这里,我使用了随机森林算法,代码如下:
```python
from sklearn.ensemble import RandomForestRegressor
regressor = RandomForestRegressor(n_estimators=100, random_state=0)
regressor.fit(X_train, y_train)
```
3. 模型评价
最后,我们需要对模型进行评价。在这里,我使用了 R2、MAE 和 MSE 三个指标来评价模型的性能。代码如下:
```python
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
y_pred = regressor.predict(X_test)
print('R2 score:', r2_score(y_test, y_pred))
print('MAE:', mean_absolute_error(y_test, y_pred))
print('MSE:', mean_squared_error(y_test, y_pred))
```
完整代码如下:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
data = pd.read_csv('stock_data.csv')
print(data.info())
data = data.dropna()
X = data.drop(['Date', 'Open', 'Close', 'High', 'Low', 'Volume'], axis=1)
y = data[['Open', 'Close', 'High', 'Low', 'Volume']]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
regressor = RandomForestRegressor(n_estimators=100, random_state=0)
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
print('R2 score:', r2_score(y_test, y_pred))
print('MAE:', mean_absolute_error(y_test, y_pred))
print('MSE:', mean_squared_error(y_test, y_pred))
```
希望这个代码对你有所帮助。如果你还有其他问题,请继续提问。
阅读全文