给我建立一个基于python的三层神经网络,包含三个输入,三个输出
时间: 2023-06-01 09:03:02 浏览: 99
好的,以下是一个基于Python的三层神经网络:
```python
import numpy as np
# 定义神经网络层
class NeuralNetworkLayer:
def __init__(self, input_size, output_size):
self.weights = np.random.rand(input_size, output_size)
self.biases = np.zeros(output_size)
# 前向传播
def forward(self, inputs):
self.inputs = inputs
self.output = np.dot(inputs, self.weights) + self.biases
return self.output
# 反向传播
def backward(self, output_error, learning_rate):
weights_error = np.dot(self.inputs.reshape(-1, 1), output_error.reshape(1, -1))
self.weights -= learning_rate * weights_error
self.biases -= learning_rate * output_error
# 定义神经网络
class NeuralNetwork:
def __init__(self):
self.layer1 = NeuralNetworkLayer(3, 5)
self.layer2 = NeuralNetworkLayer(5, 4)
self.layer3 = NeuralNetworkLayer(4, 3)
# 前向传播
def forward(self, inputs):
output1 = self.layer1.forward(inputs)
output2 = self.layer2.forward(output1)
output3 = self.layer3.forward(output2)
return output3
# 训练神经网络
def train(self, inputs, targets, learning_rate):
output = self.forward(inputs)
output_error = output - targets
layer3_error = np.dot(output_error, self.layer3.weights.T)
layer2_error = np.dot(layer3_error, self.layer2.weights.T)
self.layer3.backward(output_error, learning_rate)
self.layer2.backward(layer3_error, learning_rate)
self.layer1.backward(layer2_error, learning_rate)
```
这个神经网络有三个输入和三个输出,其中第一层有5个神经元,第二层有4个神经元,第三层有3个神经元。你可以通过调用 `forward` 方法来进行前向传播,通过 `train` 方法来训练网络。例如:
```python
# 创建神经网络
neural_network = NeuralNetwork()
# 输入数据
inputs = np.array([1, 2, 3])
# 目标输出
targets = np.array([0.1, 0.3, 0.6])
# 训练神经网络
for i in range(1000):
neural_network.train(inputs, targets, 0.1)
# 进行预测
output = neural_network.forward(inputs)
print(output)
```
输出应该为一个长度为3的数组,表示神经网络的预测输出。请注意,这只是一个简单的示例,你可能需要根据你的具体问题进行适当的修改。
阅读全文