请写出python写一个用三个输入值预测一个输出值的bp神经网络预测代码
时间: 2023-03-27 19:02:45 浏览: 130
以下是一个简单的用 Python 实现的 BP 神经网络预测代码,可以根据三个输入值预测一个输出值:
```python
import numpy as np
# 定义 sigmoid 函数
def sigmoid(x):
return 1 / (1 + np.exp(-x))
# 定义 BP 神经网络类
class BPNeuralNetwork:
def __init__(self, input_size, hidden_size, output_size):
# 初始化权重矩阵
self.weights1 = np.random.randn(input_size, hidden_size)
self.weights2 = np.random.randn(hidden_size, output_size)
def forward(self, x):
# 前向传播
self.hidden = sigmoid(np.dot(x, self.weights1))
self.output = sigmoid(np.dot(self.hidden, self.weights2))
return self.output
def train(self, x, y, learning_rate):
# 反向传播
output_error = y - self.output
output_delta = output_error * sigmoid(self.output, derivative=True)
hidden_error = np.dot(output_delta, self.weights2.T)
hidden_delta = hidden_error * sigmoid(self.hidden, derivative=True)
# 更新权重矩阵
self.weights2 += learning_rate * np.dot(self.hidden.T, output_delta)
self.weights1 += learning_rate * np.dot(x.T, hidden_delta)
# 示例
x = np.array([[, , 1], [, 1, 1], [1, , 1], [1, 1, 1]])
y = np.array([[], [1], [1], []])
nn = BPNeuralNetwork(3, 4, 1)
for i in range(10000):
nn.train(x, y, .1)
print(nn.forward(np.array([, 1, ])))
```
以上代码实现了一个简单的 BP 神经网络,可以根据三个输入值预测一个输出值。在示例中,我们使用了一个包含 4 个隐藏层神经元的神经网络,训练了 10000 次,最终可以预测出输入为 [, 1, ] 时的输出值。
阅读全文
相关推荐


















