from sklearn.datasets import fetch_california_housing as fch data=fch() #导入数据
时间: 2024-04-01 15:35:55 浏览: 69
这段代码使用了scikit-learn库中的fetch_california_housing函数,用于获取加利福尼亚州的房屋价格数据集。接下来,使用data=fch()语句将数据集赋值给变量data。
需要注意的是,这段代码中的fetch_california_housing函数需要从网络上下载数据集,因此在第一次运行时,程序会自动从网络上下载数据集并保存在本地。下载完成后,程序会自动从本地读取数据集,因此后续运行速度会更快。
相关问题
导入sklearn数据集憥的加尼福尼亚房屋数据(from sklearn.datasets import fetch_california_housing as fch),对该数据集进行多元憢性回归憦析,憧到每个憣征的憠率,并憡过数据集憦割憧到R2值。Python代码
首先,我们需要导入所需的库,包括`sklearn.datasets`、`numpy`、`pandas`用于数据处理,以及`matplotlib`用于可视化。然后我们将加载加州房屋数据并对其进行分析。以下是Python代码示例:
```python
# 导入库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
# 加载加州房屋数据集
data = fetch_california_housing()
X = data.data # 特征数据
y = data.target # 目标变量 - 房价
# 将数据转换为DataFrame以便于操作
df = pd.DataFrame(data=data.data, columns=data.feature_names)
# 对数据进行分割(通常我们会将数据分为训练集和测试集)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建线性回归模型
model = LinearRegression()
# 训练模型
model.fit(X_train, y_train)
# 预测测试集结果
y_pred = model.predict(X_test)
# 计算每个特征的权重(斜率)和对应的系数
coefficients = pd.DataFrame({'Features': data.feature_names, 'Coefficients': model.coef_})
# 打印每个特征的权重
print("每个特征的权重(系数):")
print(coefficients)
# 计算R2值
r2 = r2_score(y_test, y_pred)
print(f"R2值: {r2}")
# 可视化特征重要性(通过R2变化)
plt.figure(figsize=(8,6))
plt.barh(coefficients['Features'], coefficients['Coefficients'])
plt.title('特征的重要性')
plt.xlabel('系数')
plt.show()
#
unction load_boston is deprecated; `load_boston` is deprecated in 1.0 and will be removed in 1.2. The Boston housing prices dataset has an ethical problem. You can refer to the documentation of this function for further details. The scikit-learn maintainers therefore strongly discourage the use of this dataset unless the purpose of the code is to study and educate about ethical issues in data science and machine learning. In this special case, you can fetch the dataset from the original source:: import pandas as pd import numpy as np data_url = "http://lib.stat.cmu.edu/datasets/boston" raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None) data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]]) target = raw_df.values[1::2, 2] Alternative datasets include the California housing dataset (i.e. :func:`~sklearn.datasets.fetch_california_housing`) and the Ames housing dataset. You can load the datasets as follows:: from sklearn.datasets import fetch_california_housing housing = fetch_california_housing() for the California housing dataset and:: from sklearn.datasets import fetch_openml housing = fetch_openml(name="house_prices", as_frame=True) for the Ames housing dataset. warnings.warn(msg, category=FutureWarning) 线性回归模型的RMSE: 4.928602182665355 决策树回归模型的RMSE: 3.2273949915330395 随机森林回归模型的RMSE: 2.8109631609391226
这段提示信息的意思是,函数load_boston已经被弃用了,在1.0版本中已经弃用,在1.2版本中将被删除。波士顿房价数据集存在伦理问题,因此强烈不建议在非研究和教育伦理问题的情况下使用该数据集。如果要研究和教育有关伦理问题的数据科学和机器学习,可以从原始来源获取数据集。此外,还提供了替代数据集,包括加利福尼亚房屋数据集和埃姆斯房屋数据集。最后,给出了三种模型的RMSE值。
阅读全文