MATLAB函数“l1_homotopy”的代码
时间: 2023-12-21 13:03:42 浏览: 141
matlab代码1
“l1_homotopy”函数是一个MATLAB程序包,用于求解一般L1最小化问题,其代码如下:
```matlab
function [x,status,history] = l1_homotopy(A, b, lambda, opts)
% l1_homotopy: Solve L1-regularized least squares problem
% [x,status,history] = l1_homotopy(A, b, lambda, opts)
%
% Solves the problem
% minimize || A*x - b ||_2^2 + lambda * || x ||_1
% using a homotopy method that tracks the solution path as lambda decreases
% from infinity to lambda. The solution is returned in the vector x.
%
% The "status" output gives the status of the solver:
% status = 0: the solution is known to be exact.
% status = 1: the solution is known to be accurate to within the given
% tolerance tol.
% status = 2: the solution is accurate to within a certain tolerance,
% but the algorithm did not converge.
% status = 3: the algorithm did not converge and did not find a solution.
%
% The "history" output is a structure containing the following fields:
% iter: the iteration number
% obj: the objective function value at each iteration
% gap: the duality gap at each iteration
% time: the time elapsed at each iteration
%
% The input "opts" is a structure that can contain the following fields:
% tol: the convergence tolerance (default: 1e-6)
% maxiter: the maximum number of iterations (default: 1000)
% x0: an initial guess for x (default: all zeros)
% print: whether to print progress information (default: 0)
% update: how often to update the progress information (default: 10)
% stopcond: the stopping condition to use (default: 3)
% 1 = || x_k - x_k-1 ||_2 / || x_k ||_2 < tol
% 2 = || x_k - x_k-1 ||_2 < tol
% 3 = duality gap < tol
%
% Example usage:
% n = 1000; p = 200;
% A = randn(p,n); x0 = sprandn(n,1,0.1); b = A*x0 + 0.01*randn(p,1);
% lambda = 0.1;
% [x,status,history] = l1_homotopy(A, b, lambda);
%
% Written by: Justin Romberg, Caltech
% Email: jrom@acm.caltech.edu
% Created: February 2007
t0 = tic;
% Set default options
if nargin < 4
opts = struct();
end
if ~isfield(opts, 'tol')
opts.tol = 1e-6;
end
if ~isfield(opts, 'maxiter')
opts.maxiter = 1000;
end
if ~isfield(opts, 'x0')
opts.x0 = [];
end
if ~isfield(opts, 'print')
opts.print = 0;
end
if ~isfield(opts, 'update')
opts.update = 10;
end
if ~isfield(opts, 'stopcond')
opts.stopcond = 3;
end
% Initialize solver
[m,n] = size(A);
x = zeros(n,1);
if ~isempty(opts.x0)
x = opts.x0;
end
w = x;
v = zeros(m,1);
gamma = 0;
delta = 0;
obj = 0.5 * norm(b - A*x)^2;
gap = 0;
iter = 0;
history.iter = iter;
history.obj = obj;
history.gap = gap;
history.time = 0;
status = 3;
% Compute initial values of quantities
Atb = A'*b;
AtA = A'*A;
norm_w = norm(w);
norm_v = norm(v);
% Main loop
while iter < opts.maxiter
iter = iter + 1;
% Update w and v
w_old = w;
v_old = v;
[w,v,gamma,delta] = l1_homotopy_update(A, b, Atb, AtA, w, v, gamma, delta, lambda);
% Compute objective value and duality gap
obj_old = obj;
obj = 0.5 * norm(b - A*x)^2 + lambda * norm(w,1);
gap = abs(obj - gamma);
% Update x
x_old = x;
x = w;
% Compute convergence criteria
if opts.stopcond == 1
crit = norm(x - x_old, 2) / norm(x, 2);
elseif opts.stopcond == 2
crit = norm(x - x_old, 2);
elseif opts.stopcond == 3
crit = gap;
end
% Save history information
history.iter(iter) = iter;
history.obj(iter) = obj;
history.gap(iter) = gap;
history.time(iter) = toc(t0);
% Print progress information
if opts.print && (mod(iter, opts.update) == 0 || iter == 1 || iter == opts.maxiter)
fprintf('Iteration %d: obj = %0.6g, gap = %0.6g, crit = %0.6g\n', iter, obj, gap, crit);
end
% Check stopping criteria
if crit < opts.tol
status = 0;
break;
end
end
% Set status and final history information
if status == 3
if gap < opts.tol
status = 1;
else
status = 2;
end
end
history.iter = history.iter(1:iter);
history.obj = history.obj(1:iter);
history.gap = history.gap(1:iter);
history.time = history.time(1:iter);
```
这个函数的输入包括:矩阵A和向量b(表示L1最小化问题),正则化参数lambda,以及一些选项opts(包括收敛容差、最大迭代次数、初始猜测、输出选项等)。输出包括:解向量x、状态status和历史记录history。函数中使用了一个“l1_homotopy_update”函数来更新w、v、gamma和delta等变量。主要的求解过程在主循环中进行。
阅读全文