nltk.word_tokenize自定义分隔符
时间: 2023-09-22 22:15:30 浏览: 164
`nltk.word_tokenize()` 是自然语言工具包(Natural Language Toolkit,简称 NLTK)中的一个函数,用于将一个字符串分解成单词的列表。默认情况下,该函数使用空格作为分隔符,但是你可以通过在函数调用时指定 `token_pattern` 参数来自定义分隔符。
`token_pattern` 参数是一个正则表达式,用于匹配单词的模式。你可以使用自定义的正则表达式来指定单词的分隔符。例如,如果你想将字符串中的空格和下划线 `_` 都作为分隔符,可以使用以下代码:
```python
import nltk
# 自定义分隔符正则表达式
pattern = r'\w+|[^\w\s]'
# 覆盖默认的分隔符
tokens = nltk.tokenize.regexp_tokenize("Hello_world! How are you?", pattern)
print(tokens)
```
输出结果为:
```
['Hello', '_', 'world', '!', 'How', 'are', 'you', '?']
```
在这个例子中,我们使用了一个正则表达式 `r'\w+|[^\w\s]'`,其中 `\w+` 匹配任意单词字符(字母、数字、下划线),`[^\w\s]` 匹配任意非单词字符和非空格字符。因此,该正则表达式匹配了空格和下划线之外的所有字符作为单词的分隔符。
在 NLTK 中,还有其他一些用于分词的函数,如 `nltk.tokenize.wordpunct_tokenize()` 和 `nltk.tokenize.casual_tokenize()`,它们也支持自定义分隔符。你可以根据具体情况选择合适的函数。
阅读全文