邻域保持嵌入的python代码
时间: 2023-07-10 21:21:53 浏览: 148
下面是一个简单的邻域保持嵌入的Python代码示例:
```python
import numpy as np
from sklearn.neighbors import NearestNeighbors
from sklearn.manifold import TSNE
# 生成随机数据集
X = np.random.rand(1000, 50)
# 计算每个样本点的k近邻
k = 10
nbrs = NearestNeighbors(n_neighbors=k+1, algorithm='ball_tree').fit(X)
distances, indices = nbrs.kneighbors(X)
# 构造邻接矩阵W
W = np.zeros((1000, 1000))
for i in range(1000):
for j in indices[i]:
if i != j:
W[i,j] = 1
W[j,i] = 1
# 计算拉普拉斯矩阵L
D = np.diag(np.sum(W, axis=1))
L = D - W
# 计算特征值和特征向量
lambdas, V = np.linalg.eig(L)
# 对特征向量进行排序
idx = lambdas.argsort()
V = V[:,idx]
# 取前两个特征向量作为嵌入空间
Y = V[:,1:3]
# 可视化嵌入结果
tsne = TSNE(n_components=2)
X_tsne = tsne.fit_transform(Y)
```
这个示例代码中,首先生成了一个1000个50维的随机数据集,然后使用sklearn库中的NearestNeighbors计算每个样本点的10个最近邻,并构造邻接矩阵W和拉普拉斯矩阵L。接着,计算L的前两个特征向量作为嵌入空间,使用TSNE进行可视化。
阅读全文
相关推荐

















