遗传算法matlab路径规划
时间: 2023-12-06 07:37:41 浏览: 100
以下是使用遗传算法进行路径规划的Matlab代码:
```matlab
% 遗传算法路径规划
clc;
clear;
close all;
% 初始化地图
Grid = zeros(10, 10);
Grid(3:7, 3:7) = 1; % 设置障碍物
% 绘制地图
Grid = DrawMap(Grid);
% 定义遗传算法参数
pop_size = 100; % 种群大小
chrom_length = 20; % 染色体长度
pc = 0.8; % 交叉概率
pm = 0.01; % 变异概率
max_gen = 200; % 最大迭代次数
% 初始化种群
pop = round(rand(pop_size, chrom_length));
% 迭代
for gen = 1:max_gen
% 计算适应度
fitness = zeros(pop_size, 1);
for i = 1:pop_size
fitness(i) = CalFitness(pop(i, :), Grid);
end
% 选择
[parent1, parent2] = Select(pop, fitness);
% 交叉
offspring = Crossover(parent1, parent2, pc);
% 变异
offspring = Mutation(offspring, pm);
% 合并种群
pop = [pop; offspring];
% 保留最优个体
[~, idx] = sort(fitness, 'descend');
pop = pop(idx(1:pop_size), :);
% 绘制路径
best_chrom = pop(1, :);
best_path = Decode(best_chrom, Grid);
DrawPath(best_path);
end
% 计算适应度函数
function fitness = CalFitness(chrom, Grid)
path = Decode(chrom, Grid);
fitness = 1 / length(path);
end
% 选择函数
function [parent1, parent2] = Select(pop, fitness)
[~, idx] = sort(fitness, 'descend');
parent1 = pop(idx(1), :);
parent2 = pop(idx(2), :);
end
% 交叉函数
function offspring = Crossover(parent1, parent2, pc)
if rand < pc
pos = randi(length(parent1));
offspring = [parent1(1:pos), parent2(pos+1:end)];
else
offspring = [];
end
end
% 变异函数
function offspring = Mutation(chrom, pm)
for i = 1:length(chrom)
if rand < pm
chrom(i) = 1 - chrom(i);
end
end
offspring = chrom;
end
% 解码函数
function path = Decode(chrom, Grid)
start = [1, 1];
goal = [size(Grid, 1), size(Grid, 2)];
path = AStar(start, goal, Grid);
for i = 1:length(chrom)
if chrom(i) == 1
path = InsertNode(path);
end
end
end
% 插入节点函数
function path = InsertNode(path)
pos = randi(length(path)-1);
new_node = (path(pos,:) + path(pos+1,:)) / 2;
path = [path(1:pos,:); new_node; path(pos+1:end,:)];
end
% 绘制路径函数
function DrawPath(path)
hold on;
plot(path(:,2), path(:,1), 'r', 'LineWidth', 2);
drawnow;
end
```
该代码实现了在一个10x10的地图上使用遗传算法进行路径规划。其中,地图中的1表示障碍物,0表示可通行区域。遗传算法的参数包括种群大小、染色体长度、交叉概率、变异概率和最大迭代次数。在每次迭代中,首先计算种群中每个个体的适应度,然后进行选择、交叉和变异操作,最后保留最优个体并绘制路径。
阅读全文