sklearn二元逻辑回归模型
时间: 2023-09-01 20:06:59 浏览: 111
Sklearn中的二元逻辑回归模型是通过`LogisticRegression`类实现的。逻辑回归是一种用于解决分类问题的机器学习算法,它可以将输入特征映射到一个概率值,用于预测样本属于某个类别的概率。
下面是一个示例代码,展示如何使用sklearn中的逻辑回归模型进行二元分类:
```python
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 假设你有一组特征X和相应的标签y
X = [[1, 2], [3, 4], [5, 6], [7, 8]]
y = [0, 0, 1, 1]
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建逻辑回归模型
model = LogisticRegression()
# 在训练集上训练模型
model.fit(X_train, y_train)
# 在测试集上进行预测
y_pred = model.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)
```
在上述代码中,首先导入了`LogisticRegression`类以及其他需要的库。然后,定义了特征矩阵X和标签y。接下来,使用`train_test_split`函数将数据集分为训练集和测试集。然后,创建了一个逻辑回归模型,并使用`fit`方法在训练集上进行训练。最后,使用`predict`方法在测试集上进行预测,并计算准确率。
请注意,这只是逻辑回归模型的一个简单示例,实际应用中可能需要进行更多的数据预处理、参数调优等操作。
阅读全文