jpeg 彩色图像压缩dct java代码实现

时间: 2023-10-26 07:08:40 浏览: 58
好的,这里是一个简单的 Java 代码实现 JPEG 彩色图像压缩的过程: ```java import java.awt.image.BufferedImage; import java.io.File; import java.io.IOException; import javax.imageio.ImageIO; public class JPEGCompressor { private static final int BLOCK_SIZE = 8; private static final double[][] QUANTIZATION_MATRIX = { {16, 11, 10, 16, 24, 40, 51, 61}, {12, 12, 14, 19, 26, 58, 60, 55}, {14, 13, 16, 24, 40, 57, 69, 56}, {14, 17, 22, 29, 51, 87, 80, 62}, {18, 22, 37, 56, 68, 109, 103, 77}, {24, 35, 55, 64, 81, 104, 113, 92}, {49, 64, 78, 87, 103, 121, 120, 101}, {72, 92, 95, 98, 112, 100, 103, 99} }; public static void main(String[] args) throws IOException { BufferedImage image = ImageIO.read(new File("input.jpg")); int width = image.getWidth(); int height = image.getHeight(); int[][][] pixels = new int[height][width][3]; for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { int rgb = image.getRGB(x, y); pixels[y][x][0] = (rgb >> 16) & 0xFF; pixels[y][x][1] = (rgb >> 8) & 0xFF; pixels[y][x][2] = rgb & 0xFF; } } int[][][] ycbcr = RGBToYCbCr(pixels); int[][][] dct = DCTTransform(ycbcr); int[][][] quantized = Quantization(dct); int[][][] dequantized = Dequantization(quantized); int[][][] idct = IDCTTransform(dequantized); int[][][] output = YCbCrToRGB(idct); BufferedImage compressedImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB); for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { int r = output[y][x][0]; int g = output[y][x][1]; int b = output[y][x][2]; int rgb = (r << 16) | (g << 8) | b; compressedImage.setRGB(x, y, rgb); } } ImageIO.write(compressedImage, "jpg", new File("output.jpg")); } private static int[][][] RGBToYCbCr(int[][][] pixels) { int height = pixels.length; int width = pixels[0].length; int[][][] ycbcr = new int[height][width][3]; for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { int r = pixels[y][x][0]; int g = pixels[y][x][1]; int b = pixels[y][x][2]; int yValue = (int) (0.299 * r + 0.587 * g + 0.114 * b); int cbValue = (int) (-0.1687 * r - 0.3313 * g + 0.5 * b + 128); int crValue = (int) (0.5 * r - 0.4187 * g - 0.0813 * b + 128); ycbcr[y][x][0] = yValue; ycbcr[y][x][1] = cbValue; ycbcr[y][x][2] = crValue; } } return ycbcr; } private static int[][][] YCbCrToRGB(int[][][] pixels) { int height = pixels.length; int width = pixels[0].length; int[][][] rgb = new int[height][width][3]; for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { int yValue = pixels[y][x][0]; int cbValue = pixels[y][x][1]; int crValue = pixels[y][x][2]; int r = (int) (yValue + 1.402 * (crValue - 128)); int g = (int) (yValue - 0.34414 * (cbValue - 128) - 0.71414 * (crValue - 128)); int b = (int) (yValue + 1.772 * (cbValue - 128)); rgb[y][x][0] = r; rgb[y][x][1] = g; rgb[y][x][2] = b; } } return rgb; } private static int[][][] DCTTransform(int[][][] pixels) { int height = pixels.length; int width = pixels[0].length; int[][][] dct = new int[height][width][3]; for (int y = 0; y < height; y += BLOCK_SIZE) { for (int x = 0; x < width; x += BLOCK_SIZE) { for (int c = 0; c < 3; c++) { double[][] block = new double[BLOCK_SIZE][BLOCK_SIZE]; for (int j = 0; j < BLOCK_SIZE; j++) { for (int i = 0; i < BLOCK_SIZE; i++) { block[j][i] = pixels[y + j][x + i][c]; } } double[][] transformedBlock = DCT(block); for (int j = 0; j < BLOCK_SIZE; j++) { for (int i = 0; i < BLOCK_SIZE; i++) { dct[y + j][x + i][c] = (int) transformedBlock[j][i]; } } } } } return dct; } private static int[][][] IDCTTransform(int[][][] dct) { int height = dct.length; int width = dct[0].length; int[][][] idct = new int[height][width][3]; for (int y = 0; y < height; y += BLOCK_SIZE) { for (int x = 0; x < width; x += BLOCK_SIZE) { for (int c = 0; c < 3; c++) { double[][] block = new double[BLOCK_SIZE][BLOCK_SIZE]; for (int j = 0; j < BLOCK_SIZE; j++) { for (int i = 0; i < BLOCK_SIZE; i++) { block[j][i] = dct[y + j][x + i][c]; } } double[][] transformedBlock = IDCT(block); for (int j = 0; j < BLOCK_SIZE; j++) { for (int i = 0; i < BLOCK_SIZE; i++) { idct[y + j][x + i][c] = (int) transformedBlock[j][i]; } } } } } return idct; } private static double[][] DCT(double[][] block) { int n = block.length; double[][] transformedBlock = new double[n][n]; for (int v = 0; v < n; v++) { for (int u = 0; u < n; u++) { double sum = 0.0; for (int j = 0; j < n; j++) { for (int i = 0; i < n; i++) { sum += block[j][i] * Math.cos((2 * i + 1) * u * Math.PI / (2 * n)) * Math.cos((2 * j + 1) * v * Math.PI / (2 * n)); } } double cu = u == 0 ? 1.0 / Math.sqrt(2) : 1.0; double cv = v == 0 ? 1.0 / Math.sqrt(2) : 1.0; transformedBlock[v][u] = 0.25 * cu * cv * sum; } } return transformedBlock; } private static double[][] IDCT(double[][] block) { int n = block.length; double[][] transformedBlock = new double[n][n]; for (int j = 0; j < n; j++) { for (int i = 0; i < n; i++) { double sum = 0.0; for (int v = 0; v < n; v++) { for (int u = 0; u < n; u++) { double cu = u == 0 ? 1.0 / Math.sqrt(2) : 1.0; double cv = v == 0 ? 1.0 / Math.sqrt(2) : 1.0; sum += cu * cv * block[v][u] * Math.cos((2 * i + 1) * u * Math.PI / (2 * n)) * Math.cos((2 * j + 1) * v * Math.PI / (2 * n)); } } transformedBlock[j][i] = 0.25 * sum; } } return transformedBlock; } private static int[][][] Quantization(int[][][] dct) { int height = dct.length; int width = dct[0].length; int[][][] quantized = new int[height][width][3]; for (int y = 0; y < height; y += BLOCK_SIZE) { for (int x = 0; x < width; x += BLOCK_SIZE) { for (int c = 0; c < 3; c++) { int[][] block = new int[BLOCK_SIZE][BLOCK_SIZE]; for (int j = 0; j < BLOCK_SIZE; j++) { for (int i = 0; i < BLOCK_SIZE; i++) { block[j][i] = dct[y + j][x + i][c]; } } int[][] quantizedBlock = Quantize(block, QUANTIZATION_MATRIX); for (int j = 0; j < BLOCK_SIZE; j++) { for (int i = 0; i < BLOCK_SIZE; i++) { quantized[y + j][x + i][c] = quantizedBlock[j][i]; } } } } } return quantized; } private static int[][][] Dequantization(int[][][] quantized) { int height = quantized.length; int width = quantized[0].length; int[][][] dequantized = new int[height][width][3]; for (int y = 0; y < height; y += BLOCK_SIZE) { for (int x = 0; x < width; x += BLOCK_SIZE) { for (int c = 0; c < 3; c++) { int[][] block = new int[BLOCK_SIZE][BLOCK_SIZE]; for (int j = 0; j < BLOCK_SIZE; j++) { for (int i = 0; i < BLOCK_SIZE; i++) { block[j][i] = quantized[y + j][x + i][c]; } } int[][] dequantizedBlock = Dequantize(block, QUANTIZATION_MATRIX); for (int j = 0; j < BLOCK_SIZE; j++) { for (int i = 0; i < BLOCK_SIZE; i++) { dequantized[y + j][x + i][c] = dequantizedBlock[j][i]; } } } } } return dequantized; } private static int[][] Quantize(int[][] block, double[][] quantizationMatrix) { int n = block.length; int[][] quantizedBlock = new int[n][n]; for (int j = 0; j < n; j++) { for (int i = 0; i < n; i++) { quantizedBlock[j][i] = (int) Math.round(block[j][i] / quantizationMatrix[j][i]); } } return quantizedBlock; } private static int[][] Dequantize(int[][] block, double[][] quantizationMatrix) { int n = block.length; int[][] dequantizedBlock = new int[n][n]; for (int j = 0; j < n; j++) { for (int i = 0; i < n; i++) { dequantizedBlock[j][i] = (int) Math.round(block[j][i] * quantizationMatrix[j][i]); } } return dequantizedBlock; } } ``` 这个代码实现了 JPEG 彩色图像压缩的过程,包括 RGB 到 YCbCr 的转换、DCT 变换、量化、反量化、IDCT 变换和 YCbCr 到 RGB 的转换。你可以将输入图像放在与代码相同的目录下,并将其命名为 `input.jpg`,然后运行代码,输出图像将保存在 `output.jpg` 中。

相关推荐

最新推荐

recommend-type

基于DCT_变换的JPEG图像压缩及其MATLAB_仿真.

随着科学发展,图像压缩技术越来越被人们所关注。为此从众多的图像编码标准中选取了基于DCT变换的JPEG图像压缩进行研究,并通过对比分析各种软件特性选取MATLAB进行实验仿真。
recommend-type

基于DCT的图像压缩的实验报告

本实验是基于DCT用C语言来编写图片的压缩和解压缩程序,内有源代码和完整实验报告
recommend-type

图像压缩解压JPEG编码

JPEG是用于灰度图与真彩图的静态图像压缩的国际标准,它采用的是以DCT(Discrete Cosine Transform,离散余弦变换)为基础的有损压缩算法。因为视频的帧内编码就是静态图像编码,所以JPEG的编码算法也用于MPEG视频...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SQL怎么实现 数据透视表

SQL可以通过使用聚合函数和GROUP BY子句来实现数据透视表。 例如,假设有一个销售记录表,其中包含产品名称、销售日期、销售数量和销售额等信息。要创建一个按照产品名称、销售日期和销售额进行汇总的数据透视表,可以使用以下SQL语句: ``` SELECT ProductName, SaleDate, SUM(SaleQuantity) AS TotalQuantity, SUM(SaleAmount) AS TotalAmount FROM Sales GROUP BY ProductName, SaleDate; ``` 该语句将Sales表按照ProductName和SaleDat
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这