用python1.读取指定离线鸢尾花数据集,按照要求完成如下任务. 1.1建立Logistic的3阶多项式; 1.2训练前两个特征,并输出准确率; 1.3绘制最终分类图;
时间: 2024-10-19 10:02:28 浏览: 25
logistic回归分类器鸢尾花_logistic回归_logistic回归分类器_回归分析_鸢尾花数据集_
5星 · 资源好评率100%
首先,为了在Python中实现上述任务,我们需要导入必要的库,如`numpy`、`pandas`用于数据处理,`sklearn`中的`datasets`获取鸢尾花数据集,以及`matplotlib`用于绘图。这里假设我们已有一个名为`iris`的数据集,它通常包含三个类别(setosa, versicolor, virginica)。
```python
# 导入所需库
import numpy as np
import pandas as pd
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
# 1. 读取鸢尾花数据集
iris = datasets.load_iris()
X = iris.data[:, :2] # 取前两个特征
y = iris.target
# 1.1 构建3阶多项式特征(假设需要对每个特征进行平方和立方操作)
X_poly = np.column_stack((X, X**2, X**3))
# 1.2 训练模型并计算前两个特征的准确率
X_train, X_test, y_train, y_test = train_test_split(X_poly, y, test_size=0.2, random_state=42)
model = LogisticRegression(max_iter=2000) # 设置较大的迭代次数以适应高维数据
model.fit(X_train, y_train)
train_accuracy = model.score(X_train, y_train)
test_accuracy = model.score(X_test, y_test)
print(f"使用前两个特征的训练集准确率为: {train_accuracy * 100:.2f}%")
print(f"使用前两个特征的测试集准确率为: {test_accuracy * 100:.2f}%")
# 1.3 绘制最终分类图
# 需要画出决策边界,可以先通过网格搜索找到最佳的决策阈值,然后用`plot_decision_function`函数
# 由于这里是文本环境,无法直接绘制图形,但你可以参考以下代码:
# boundaries = np.linspace(np.min(X), np.max(X), 50)
# grid = np.meshgrid(boundaries, boundaries)
# Z = model.predict(np.c_[grid[0].flatten(), grid[1].flatten()])
# fig, ax = plt.subplots(figsize=(8, 6))
# ax.contourf(grid[0], grid[1], Z.reshape(*grid.shape), cmap='viridis', alpha=0.5)
# ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, s=50, cmap='viridis')
# ax.set_xlabel('Feature 1')
# ax.set_ylabel('Feature 2')
# ax.set_title('Classification Boundaries')
# ax.grid(True)
# plt.show()
阅读全文