读取指定离线鸢尾花数据集,建立Logistic的3阶多项式;训练前两个特征,并输出准确率
时间: 2024-10-19 15:02:59 浏览: 37
首先,为了读取离线的鸢尾花数据集,我们可以使用Python的scikit-learn库,它包含了iris数据集,通常作为示例数据集。假设数据已经预处理好并且存储为CSV文件。以下是步骤:
1. 导入必要的库:
```python
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.metrics import accuracy_score
```
2. 加载数据:
```python
data = pd.read_csv('your_dataset.csv') # 替换为实际路径
X = data.iloc[:, :2] # 我们只选择前两个特征
y = data['target'] # 类别标签
```
3. 划分训练集和测试集:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
4. 创建3阶多项式特征:
```python
poly_features = PolynomialFeatures(degree=3)
X_train_poly = poly_features.fit_transform(X_train)
X_test_poly = poly_features.transform(X_test)
```
5. 训练Logistic回归模型:
```python
model = LogisticRegression()
model.fit(X_train_poly, y_train)
```
6. 预测并计算准确率:
```python
y_pred = model.predict(X_test_poly)
accuracy = accuracy_score(y_test, y_pred)
print("3阶多项式下,训练前两个特征的Logistic回归模型的准确率为:", accuracy)
```
这里我们假设了数据集中有名为'target'的列代表类别。记得替换实际的数据集路径,并根据需要调整特征选择和多项式的度数。
阅读全文