利用MATLAB编写代码,采用Crout分解法求解{x+y-z=1;-x+y+z=1;-x-y-z=-3;方程组
时间: 2024-11-25 10:15:59 浏览: 5
良心出品MATLAB-追赶法求解三对角方程组的算法原理例题与程序.doc
在MATLAB中,我们可以使用矩阵运算来处理线性方程组,其中Crout分解法是一种用于求解稀疏系统的一种有效方法。对于给定的方程组:
\[
\begin{cases}
x + y - z = 1 \\
-x + y + z = 1 \\
-x - y - z = -3
\end{cases}
\]
首先,我们将这个方程组转换成系数矩阵 \(A\) 和常数向量 \(b\) 的形式:
\[ A = \begin{bmatrix}
1 & 1 & -1 \\
-1 & 1 & 1 \\
-1 & -1 & -1
\end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 1 \\ -3 \end{bmatrix} \]
然后,我们可以通过Crout分解方法将 \(A\) 分解为上三角矩阵 \(U\) 和下三角矩阵 \(L\)(这里 \(L\) 可能是对角线元素全为1的单位阵),即 \(A = UL\)。接着,通过反代换步骤计算出 \(U^{-1}b\) 和 \(L^{-1}(U^{-1}b)\) 来得到解。
下面是使用MATLAB代码实现Crout分解法的一段示例:
```matlab
% 给定方程组
A = [1 1 -1;
-1 1 1;
-1 -1 -1];
b = [1; 1; -3];
% Crout分解
n = size(A, 1);
U = eye(n); % 初始化上三角矩阵
L = A;
for i = 1:n-1
for j = i+1:n
U(i,j) = A(i,j) / L(j,j); % 更新U的相应位置
L(i:end,j) = L(i:end,j) - U(i,j) * L(j:j,n); % 更新L的列
end
end
y = U \ b; % 计算U^-1b
z = L \ y; % 计算L^-1(U^-1)b
% 检查解是否满足原方程
x = z(1);
y = z(2);
z = z(3);
disp(['Solution: x = ', num2str(x), ', y = ', num2str(y), ', z = ', num2str(z)]);
%
阅读全文