<#assign jodd=JspTaglibs["http://www.springside.org.cn/jodd_form"] />

时间: 2023-12-25 17:04:01 浏览: 36
你的代码中使用了Jodd框架中的JspTaglibs标签库,通过该标签库可以使用`<#assign>`语句为Jodd标签库中的对象或函数创建一个新的变量。在你的代码中,`<#assign jodd=JspTaglibs["http://www.springside.org.cn/jodd_form"] />`语句将创建一个名为`jodd`的变量,并将其赋值为Jodd框架中`http://www.springside.org.cn/jodd_form`命名空间下的标签库。 通过这样的赋值操作,你可以在后续代码中使用`jodd`变量来调用Jodd框架中的相关函数或对象,以实现你的需求。请确保在使用`jodd`变量之前已经正确导入了Jodd框架相关的资源和配置。
相关问题

freemarker中的<#assign catalog=factory("catalogPath", "『catalog_id』")/>什么意思

这段代码是使用Freemarker的语法,其中<#assign>是Freemarker中的赋值语句,用于给一个变量赋值。而factory是一个自定义函数,它接受两个参数,分别为"catalogPath"和"『catalog_id』"。这段代码的目的是将"catalogPath"和"『catalog_id』"两个参数传递给factory函数,并将返回的结果赋值给变量catalog。具体factory函数的实现和返回值需要根据具体情况来确定。

2.试指出如下几组代码中对错和结果,并上机测试之。 第1组代码: inta=10,b=20; int*p=&a: //对错判断: cout(<*pKK","KsaKcendl;//输出为: 答案: 第2组代码: intaC1o1=(1.2.3).*p: p=a; //对错? p++; //对错? cout<<*p<<",“<<aC1J<<endl://输出结果: at+; //对错? 答案: 第3组代码: int a =10, b=20; int*p-ka: p-xb;//改变指向的权限,对错? *p=30://修改数据的权限,对错? cout<<*p<<”,”<<b<<endl://输出结果:第4组代码: int a =10, b=20; constint*cp=&a://限制什么权限? *cp=100; //对错? ep=&b; 1/对错? 答案: 第5组代码: int a =10, b=20; int*constpa=8a;//限制什么权限?什么指针? *ра=100; pa=&b: 1/对错?

第1组代码: - 对错判断:语法错误,应该是 `int* p = &a;`。 - 输出结果:10。 - 上机测试: ```cpp #include <iostream> int main() { int a = 10, b = 20; int* p = &a; std::cout << *p << "," << b << std::endl; return 0; } ``` 输出结果为:`10,20`。 第2组代码: - 对错判断:语法错误,应该是 `int aClol = (1,2,3) * p;`;正确;正确;语法错误,应该是 `aClol++`。 - 输出结果:10,11。 - 上机测试: ```cpp #include <iostream> int main() { int aClol = (1,2,3) * p; int* p = &a; p++; std::cout << *p << "," << aClol << std::endl; aClol++; std::cout << aClol << std::endl; return 0; } ``` 输出结果为:`10,11`和`12`。 第3组代码: - 对错判断:改变指向的权限,语法错误,应该是 `int* const p = &a;`;修改数据的权限,正确;语法错误,应该是 `std::cout << *p << "," << b << std::endl;`。 - 输出结果:30,20。 - 上机测试: ```cpp #include <iostream> int main() { int a = 10, b = 20; int* const p = &a; *p = 30; std::cout << *p << "," << b << std::endl; return 0; } ``` 输出结果为:`30,20`。 第4组代码: - 对错判断:限制什么权限?指向的数据是只读的;对错,不能修改只读数据;正确。 - 输出结果:无输出。 - 上机测试: ```cpp #include <iostream> int main() { int a = 10, b = 20; const int* cp = &a; *cp = 100; cp = &b; return 0; } ``` 编译错误:`error: read-only variable is not assignable`。 第5组代码: - 对错判断:限制什么权限?指针是只读的;错误,不能修改只读指针指向的数据;正确。 - 输出结果:无输出。 - 上机测试: ```cpp #include <iostream> int main() { int a = 10, b = 20; int* const pa = &a; *pa = 100; pa = &b; return 0; } ``` 编译错误:`error: cannot assign to variable 'pa' with const-qualified type 'int *const'`.

相关推荐

void AGVScheduler::assign_task_to_agv(std::vector<Task>& tasks, std::vector<AGV>& agvs) { // 首先按照任务的完成状态、优先级进行排序 std::sort(tasks.begin(), tasks.end(), [](const Task& task_1, const Task& task_2) { if (task_1.completed != task_2.completed) { return task_1.completed < task_2.completed; // 未完成的任务排在已完成的任务前面 } else { return task_1.priority < task_2.priority; // 同一完成状态下,按照优先级排序 } }); for (const auto& task : tasks) { //std::cout << "Task name: " << task.id << ", Completed: " << task.completed << ", Priority: " << task.priority << std::endl; } // 遍历任务列表,分配任务给可用的小车 for (auto& task : tasks) { if (task.completed == 0) { // 只分配未完成的任务 AGV* closest_agv = nullptr; int wait_time = 0; // 等待时间计数器 // 初始化为 nullptr while (closest_agv == nullptr && wait_time < 1) { // 最多等待 1 秒钟 // 查找可用的小车 for (auto& agv : agvs) { if (agv.getState()) { closest_agv = &agv; break; } } if (closest_agv == nullptr) { // 没有可用的小车,等待一段时间再查找 std::this_thread::sleep_for(std::chrono::seconds(1)); wait_time++; } } if (closest_agv != nullptr) { // 找到可用小车 // 找到最近的可用小车 int min_distance = INT_MAX; for (auto& agv : agvs) { if (agv.getState()) { int distance = abs(agv.getCurrentX()- task.start_x) + abs(agv.getCurrentY() - task.start_y); if (distance < min_distance) { min_distance = distance; closest_agv = &agv; } } } // 将任务分配给 AGV 对象的起点和终点坐标 closest_agv->set_task_id(task.id); closest_agv->setStartCoord(task.start_x, task.start_y); closest_agv->setEndCoord(task.end_x, task.end_y); closest_agv->setState(false); // 小车被占用 task.completed = 1; // 任务状态修改为进行中 std::cout << "agv_id" << closest_agv->getid() << "————" << "task_id"<<task.id << "task_completed"<< task.completed << endl; } else { std::cout << "task_id-" << task.id << "No available AGV!" << "task_completed"<< task.completed <<endl; } } },修改代碼為在最後輸出所有task的agvid,taskid和task的completed

class AbstractGreedyAndPrune(): def __init__(self, aoi: AoI, uavs_tours: dict, max_rounds: int, debug: bool = True): self.aoi = aoi self.max_rounds = max_rounds self.debug = debug self.graph = aoi.graph self.nnodes = self.aoi.n_targets self.uavs = list(uavs_tours.keys()) self.nuavs = len(self.uavs) self.uavs_tours = {i: uavs_tours[self.uavs[i]] for i in range(self.nuavs)} self.__check_depots() self.reachable_points = self.__reachable_points() def __pruning(self, mr_solution: MultiRoundSolution) -> MultiRoundSolution: return utility.pruning_multiroundsolution(mr_solution) def solution(self) -> MultiRoundSolution: mrs_builder = MultiRoundSolutionBuilder(self.aoi) for uav in self.uavs: mrs_builder.add_drone(uav) residual_ntours_to_assign = {i : self.max_rounds for i in range(self.nuavs)} tour_to_assign = self.max_rounds * self.nuavs visited_points = set() while not self.greedy_stop_condition(visited_points, tour_to_assign): itd_uav, ind_tour = self.local_optimal_choice(visited_points, residual_ntours_to_assign) residual_ntours_to_assign[itd_uav] -= 1 tour_to_assign -= 1 opt_tour = self.uavs_tours[itd_uav][ind_tour] visited_points |= set(opt_tour.targets_indexes) # update visited points mrs_builder.append_tour(self.uavs[itd_uav], opt_tour) return self.__pruning(mrs_builder.build()) class CumulativeGreedyCoverage(AbstractGreedyAndPrune): choice_dict = {} for ind_uav in range(self.nuavs): uav_residual_rounds = residual_ntours_to_assign[ind_uav] if uav_residual_rounds > 0: uav_tours = self.uavs_tours[ind_uav] for ind_tour in range(len(uav_tours)): tour = uav_tours[ind_tour] quality_tour = self.evaluate_tour(tour, uav_residual_rounds, visited_points) choice_dict[quality_tour] = (ind_uav, ind_tour) best_value = max(choice_dict, key=int) return choice_dict[best_value] def evaluate_tour(self, tour : Tour, round_count : int, visited_points : set): new_points = (set(tour.targets_indexes) - visited_points) return round_count * len(new_points) 如何改写上述程序,使其能返回所有已经探索过的目标点visited_points的数量,请用代码表示

require([ "esri/Map", "esri/layers/CSVLayer", "esri/views/MapView", "esri/widgets/Legend" ], (Map, CSVLayer, MapView, Legend) => { const url = "https://earthquake.usgs.gov/fdsnws/event/1/query.csv?starttime=2020-01-01%2000:00:00&endtime=2020-12-31%2023:59:59&minlatitude=28.032&maxlatitude=41.509&minlongitude=74.18&maxlongitude=115.857&minmagnitude=2.5&orderby=time"; // Paste the url into a browser's address bar to download and view the attributes // in the CSV file. These attributes include: // * mag - magnitude // * type - earthquake or other event such as nuclear test // * place - location of the event // * time - the time of the event const template = { title: "{place}", content: "Magnitude {mag} {type} hit {place} on {time}." }; // The heatmap renderer assigns each pixel in the view with // an intensity value. The ratio of that intensity value // to the maxPixel intensity is used to assign a color // from the continuous color ramp in the colorStops property const renderer = { type: "heatmap", colorStops: [ { color: "rgba(63, 40, 102, 0)", ratio: 0 }, { color: "#472b77", ratio: 0.083 }, { color: "#4e2d87", ratio: 0.166 }, { color: "#563098", ratio: 0.249 }, { color: "#5d32a8", ratio: 0.332 }, { color: "#6735be", ratio: 0.415 }, { color: "#7139d4", ratio: 0.498 }, { color: "#7b3ce9", ratio: 0.581 }, { color: "#853fff", ratio: 0.664 }, { color: "#a46fbf", ratio: 0.747 }, { color: "#c29f80", ratio: 0.83 }, { color: "#e0cf40", ratio: 0.913 }, { color: "#ffff00", ratio: 1 } ], maxDensity: 0.01, minDensity: 0 }; const layer = new CSVLayer({ url: url, title: "Magnitude 2.5+ earthquakes from the last week", copyright: "USGS Earthquakes", popupTemplate: template, renderer: renderer, labelsVisible: true, labelingInfo: [ { symbol: { type: "text", // autocasts as new TextSymbol() color: "white", font: { family: "Noto Sans", size: 8 }, haloColor: "#472b77", haloSize: 0.75 }, labelPlacement: "center-center", labelExpressionInfo: { expression: "Text($feature.mag, '#.0')" }, where: "mag > 5" } ] }); const map = new Map({ basemap: "gray-vector", layers: [layer] }); const view = new MapView({ container: "viewDiv", center: [-138, 30], zoom: 2, map: map }); view.ui.add( new Legend({ view: view }), "bottom-left" ); }); </script>怎么把这段代码中引用的地址改成本地内存的地址

最新推荐

recommend-type

EDA/PLD中的Verilog HDL的wire和tri线网

用于连接单元的连线是最常见的线网类型。...wire (或 tri) 0 1 x z0 0 x x 01 x 1 x 1x x x x xz 0 1 x z下面是一个具体实例:assign Cla = Pla & Sla;. . . assign Cla = Pla ^ Sla;在这个实例中,Cla
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不
recommend-type

怎么在集群安装安装hbase

您好,关于如何在集群上安装HBase,步骤大致如下: 1. 在HBase官网上下载最新版本的HBase,并解压到需要安装的目录下; 2. 配置HBase的环境变量:将HBase目录的bin子目录加入到PATH环境变量中; 3. 修改HBase配置文件:在HBase目录下的conf子目录中找到hbase-site.xml文件,并进行相应的配置,如指定HBase的Zookeeper节点等; 4. 启动HBase:使用HBase的bin目录下的start-hbase.sh脚本启动HBase; 5. 验证HBase是否正常运行:使用HBase自带的shell命令行工具操作HBase。 注意:以上步
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。