cv2.findcontours和cv2.boundingRect
时间: 2023-10-27 11:55:44 浏览: 116
cv2.findContours是一个用于查找图像中的轮廓的函数,它接受一个二值图像作为输入,并返回一个轮廓的列表。每个轮廓是一个由点组成的数组,表示图像中的连续边界。
cv2.boundingRect是一个用于计算轮廓的边界框的函数。它接受一个轮廓作为输入,并返回一个矩形(x, y, w, h),其中(x, y)是矩形左上角的坐标,w是矩形的宽度,h是矩形的高度。这个边界框是能够完全包围轮廓的最小矩形。
通常,我们可以使用cv2.findContours来找到图像中的轮廓,并使用cv2.boundingRect来计算每个轮廓的边界框,以便进行进一步的处理,如目标检测或图像分割。
相关问题
import cv2 # 初始化背景建模器 fgbg = cv2.createBackgroundSubtractorMOG2() # 读取视频文件 cap = cv2.VideoCapture('w5.mp4') while True: # 读取一帧图像 ret, frame = cap.read() if not ret: break # 对图像进行背景建模 fgmask = fgbg.apply(frame) # 缩放比例 scale_percent = 50 # 计算缩放后的新尺寸 width = int(frame.shape[1] * scale_percent / 100) height = int(frame.shape[0] * scale_percent / 100) dim = (width, height) # 缩放图像 frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA) fgmask = cv2.resize(fgmask, dim, interpolation=cv2.INTER_AREA) # 对二值化结果进行形态学操作 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel) # 寻找轮廓并绘制矩形框 contours, hierarchy = cv2.findContours(fgmask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: area = cv2.contourArea(contour) if area > 1500: # 去除过小的噪点 x, y, w, h = cv2.boundingRect(contour) cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2) # 显示结果 cv2.imshow('frame', frame) cv2.imshow('fgmask', fgmask) if cv2.waitKey(30) == ord('q'): break # 释放资源 cap.release() cv2.destroyAllWindows()用pyqt5帮这个程序做一个可视化界面
可以使用PyQt5来实现可视化界面,以下是一个简单的示例代码:
```python
import sys
from PyQt5.QtWidgets import QApplication, QWidget, QLabel, QPushButton, QVBoxLayout
import cv2
import numpy as np
class VideoPlayer(QWidget):
def __init__(self):
super().__init__()
# 初始化背景建模器
self.fgbg = cv2.createBackgroundSubtractorMOG2()
# 创建界面元素
self.label = QLabel(self)
self.button = QPushButton('开始/暂停', self)
self.button.clicked.connect(self.toggle_playback)
# 创建布局并添加元素
layout = QVBoxLayout()
layout.addWidget(self.label)
layout.addWidget(self.button)
self.setLayout(layout)
# 初始化视频播放状态
self.playing = False
# 读取视频文件
self.cap = cv2.VideoCapture('w5.mp4')
# 启动定时器
self.timer = self.startTimer(30)
def toggle_playback(self):
self.playing = not self.playing
def timerEvent(self, event):
if self.playing:
# 读取一帧图像
ret, frame = self.cap.read()
if not ret:
# 视频播放结束
self.playing = False
self.cap.release()
cv2.destroyAllWindows()
return
# 对图像进行背景建模
fgmask = self.fgbg.apply(frame)
# 缩放比例
scale_percent = 50
# 计算缩放后的新尺寸
width = int(frame.shape[1] * scale_percent / 100)
height = int(frame.shape[0] * scale_percent / 100)
dim = (width, height)
# 缩放图像
frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA)
fgmask = cv2.resize(fgmask, dim, interpolation=cv2.INTER_AREA)
# 对二值化结果进行形态学操作
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel)
# 寻找轮廓并绘制矩形框
contours, hierarchy = cv2.findContours(fgmask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
area = cv2.contourArea(contour)
if area > 1500: # 去除过小的噪点
x, y, w, h = cv2.boundingRect(contour)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)
# 将图像转换为RGB格式并显示
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image = np.rot90(frame)
height, width, channel = image.shape
bytesPerLine = 3 * width
qImg = QImage(image.data, width, height, bytesPerLine, QImage.Format_RGB888)
self.label.setPixmap(QPixmap.fromImage(qImg))
if __name__ == '__main__':
app = QApplication(sys.argv)
player = VideoPlayer()
player.show()
sys.exit(app.exec_())
```
这个程序中,我们创建了一个名为 `VideoPlayer` 的类,继承自 `QWidget`,并包含一个标签和一个按钮。在类的初始化方法中,我们创建了这些界面元素,并将它们添加到一个垂直布局中。我们还初始化了视频播放状态和定时器,并在定时器回调函数中读取视频帧、进行背景建模、绘制矩形框等处理,并将处理后的图像显示在标签中。在按钮的点击事件中,我们切换视频播放状态。最后,我们使用 `QApplication` 启动了程序,并显示了 `VideoPlayer` 窗口。
注意:在运行程序之前,需要确保已经正确安装了 PyQt5 和 OpenCV。
请使用cv2.findContours函数写一个识别黑色矩形的python程序
好的,这里是一个使用cv2.findContours函数识别黑色矩形的Python程序:
```python
import cv2
# 读取图像
image = cv2.imread('image.jpg')
# 转为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 二值化
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
# 查找轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# 遍历轮廓
for contour in contours:
# 计算轮廓周长
perimeter = cv2.arcLength(contour, True)
# 近似轮廓
approx = cv2.approxPolyDP(contour, 0.04 * perimeter, True)
# 如果轮廓是矩形
if len(approx) == 4:
# 确保矩形是黑色的
x, y, w, h = cv2.boundingRect(contour)
roi = image[y:y+h, x:x+w]
hsv = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
lower_black = np.array([0, 0, 0])
upper_black = np.array([180, 255, 30])
mask = cv2.inRange(hsv, lower_black, upper_black)
if cv2.countNonZero(mask) == 0:
# 在图像上绘制矩形
cv2.drawContours(image, [contour], -1, (0, 255, 0), 2)
# 显示图像
cv2.imshow('image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
在这个程序中,我们首先读取了一张图像,并将其转化为灰度图像。然后使用cv2.threshold函数将其二值化,并使用cv2.findContours函数查找轮廓。接下来,我们遍历每个轮廓,并使用cv2.approxPolyDP函数将其近似为一个多边形。如果近似后的多边形有4个顶点,则我们认为它是一个矩形。然后,我们检查矩形是否是黑色的,如果是,则在图像上绘制矩形。最后,我们显示结果图像。
阅读全文