图像修复深度学习代码
时间: 2024-02-04 20:02:38 浏览: 120
很抱歉,根据提供的引用内容,没有提供具体的图像修复深度学习代码。但是,我可以为您提供一个常见的图像修复深度学习算法的代码示例,供您参考。
以下是一个使用深度学习框架PyTorch实现的图像修复算法的代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader
# 定义图像修复模型
class ImageRestorationModel(nn.Module):
def __init__(self):
super(ImageRestorationModel, self).__init__()
# 定义网络结构
self.encoder = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.ReLU()
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(256, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(128, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(64, 3, kernel_size=3, stride=1, padding=1),
nn.Sigmoid()
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
# 加载数据集
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor()
])
dataset = ImageFolder('path/to/dataset', transform=transform)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
# 初始化模型和优化器
model = ImageRestorationModel()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
num_epochs = 10
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
criterion = nn.MSELoss()
for epoch in range(num_epochs):
for images, _ in dataloader:
images = images.to(device)
outputs = model(images)
loss = criterion(outputs, images)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
# 使用模型进行图像修复
test_image = Image.open('path/to/test_image.jpg')
test_image = transform(test_image).unsqueeze(0).to(device)
restored_image = model(test_image)
restored_image = restored_image.squeeze(0).cpu().detach().numpy()
# 显示修复后的图像
plt.imshow(restored_image.transpose(1, 2, 0))
plt.axis('off')
plt.show()
```
请注意,这只是一个简单的示例代码,实际的图像修复深度学习算法可能更加复杂,并且需要根据具体的任务和数据集进行调整和优化。