python 处理makearray
时间: 2023-08-03 09:03:18 浏览: 85
在Python中,处理数组可以使用多种方法。如果你想要创建一个数组,可以使用内置的`array`模块或者使用第三方库`numpy`。
使用`array`模块创建数组的示例代码如下:
```python
import array
# 创建一个整数数组
my_array = array.array('i', [1, 2, 3, 4, 5])
print(my_array)
```
使用`numpy`库创建数组的示例代码如下:
```python
import numpy as np
# 创建一个整数数组
my_array = np.array([1, 2, 3, 4, 5])
print(my_array)
```
无论是使用`array`模块还是`numpy`库创建的数组,都可以进行各种操作和处理。你可以根据具体需求对数组进行索引、切片、排序、计算等操作。如果你能提供更具体的关于"处理makearray"的需求,我可以为你提供更详细的帮助。
相关问题
python实现ADASYN处理不平衡数据
ADASYN(Adaptive Synthetic Sampling)是一种用于解决不平衡数据问题的算法,它可以根据数据分布的密度进行自适应地合成少数类样本。下面是Python实现ADASYN处理不平衡数据的示例代码:
```python
import numpy as np
from collections import Counter
def adasyn(X, y, n_neighbors=5, ratio=0.5, beta=1.0):
"""
ADASYN算法处理不平衡数据
:param X: 特征矩阵
:param y: 标签向量
:param n_neighbors: 每个少数类样本选择的近邻数
:param ratio: 合成的少数类样本数目与原少数类样本数目之比
:param beta: 分布密度偏向因子,控制合成样本在密度稀疏区域的生成量
:return: 合成后的特征矩阵和标签向量
"""
# 统计每个类别的样本数
counter = Counter(y)
majority_class = max(counter, key=counter.get)
minority_class = min(counter, key=counter.get)
n_samples = len(X)
n_minority = counter[minority_class]
n_synthetic = int(ratio * n_minority)
# 计算每个样本的分布密度
dist = np.zeros(n_samples)
for i in range(n_samples):
dist[i] = np.sum(np.square(X[i] - X), axis=1)
dist /= np.max(dist)
# 合成新的少数类样本
synthetic_X = []
synthetic_y = []
for i in range(n_samples):
if y[i] == minority_class:
# 找到样本i的近邻
neighbors = np.argsort(dist)[1:n_neighbors + 1]
neighbors = neighbors[y[neighbors] == majority_class]
if len(neighbors) > 0:
# 根据密度比例计算合成样本的数量
g = np.sum(dist[neighbors]) / len(neighbors)
n = int(beta * g)
for j in range(n):
# 生成合成样本
k = np.random.choice(neighbors)
diff = X[k] - X[i]
synthetic = X[i] + np.random.rand() * diff
synthetic_X.append(synthetic)
synthetic_y.append(minority_class)
# 合并原始样本和合成样本
synthetic_X = np.array(synthetic_X)
synthetic_y = np.array(synthetic_y)
X_resampled = np.vstack((X, synthetic_X))
y_resampled = np.hstack((y, synthetic_y))
return X_resampled, y_resampled
```
示例用法:
```python
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
# 生成不平衡数据集
X, y = make_classification(n_samples=10000, n_features=20, n_informative=10, n_redundant=5,
weights=[0.9, 0.1], random_state=42)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 使用ADASYN算法处理不平衡数据
X_resampled, y_resampled = adasyn(X_train, y_train, n_neighbors=5, ratio=0.5, beta=1.0)
# 训练模型
clf = LogisticRegression(random_state=42)
clf.fit(X_resampled, y_resampled)
# 在测试集上评估模型
y_pred = clf.predict(X_test)
print(classification_report(y_test, y_pred))
```
参考文献:[Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. ADASYN: Adaptive Synthetic Sampling for Imbalanced Learning. In: Proc. 2008 IEEE Intl. Joint Conf. on Neural Networks (IJCNN 2008), pp. 1322-1328, June 2008.](https://sci2s.ugr.es/keel/pdf/algorithm/congreso/2008-He-ijcnn.pdf)
数字图像处理与python实现哈夫曼
哈夫曼编码是一种无损的数据压缩算法,它通过将出现频率较高的字符用较短的编码表示,而将出现频率较低的字符用较长的编码表示,从而达到压缩数据的目的。在数字图像处理中,哈夫曼编码可以应用于图像压缩、图像传输等方面。
下面是使用Python实现哈夫曼编码的基本步骤:
1. 统计字符出现的频率,构建字符频率表。
2. 将字符频率表构建成哈夫曼树。
3. 对哈夫曼树进行遍历,得到每个字符的哈夫曼编码。
4. 将原始数据转换为对应的哈夫曼编码。
5. 将哈夫曼编码转换为二进制数据,最终实现数据压缩。
以下是一个简单的Python实现示例:
```python
import heapq
from collections import defaultdict
class HuffmanCoding:
def __init__(self, data):
self.data = data
self.heap = []
self.codes = {}
self.reverse_mapping = {}
class HeapNode:
def __init__(self, char, freq):
self.char = char
self.freq = freq
self.left = None
self.right = None
def __lt__(self, other):
return self.freq < other.freq
def make_frequency_dict(self):
frequency = defaultdict(int)
for char in self.data:
frequency[char] += 1
return frequency
def make_heap(self, frequency):
for char, freq in frequency.items():
node = self.HeapNode(char, freq)
heapq.heappush(self.heap, node)
def merge_nodes(self):
while len(self.heap) > 1:
node1 = heapq.heappop(self.heap)
node2 = heapq.heappop(self.heap)
merged = self.HeapNode(None, node1.freq + node2.freq)
merged.left = node1
merged.right = node2
heapq.heappush(self.heap, merged)
def make_codes_helper(self, node, current_code):
if node is None:
return
if node.char is not None:
self.codes[node.char] = current_code
self.reverse_mapping[current_code] = node.char
return
self.make_codes_helper(node.left, current_code + "0")
self.make_codes_helper(node.right, current_code + "1")
def make_codes(self):
root = heapq.heappop(self.heap)
current_code = ""
self.make_codes_helper(root, current_code)
def get_encoded_data(self):
encoded_data = ""
for char in self.data:
encoded_data += self.codes[char]
return encoded_data
def pad_encoded_data(self, encoded_data):
extra_padding = 8 - len(encoded_data) % 8
for i in range(extra_padding):
encoded_data += "0"
padded_info = "{0:08b}".format(extra_padding)
encoded_data = padded_info + encoded_data
return encoded_data
def get_byte_array(self, padded_encoded_data):
if len(padded_encoded_data) % 8 != 0:
print("Encoded data not padded properly")
exit(0)
b = bytearray()
for i in range(0, len(padded_encoded_data), 8):
byte = padded_encoded_data[i:i+8]
b.append(int(byte, 2))
return b
def compress(self):
frequency = self.make_frequency_dict()
self.make_heap(frequency)
self.merge_nodes()
self.make_codes()
encoded_data = self.get_encoded_data()
padded_encoded_data = self.pad_encoded_data(encoded_data)
byte_array = self.get_byte_array(padded_encoded_data)
return byte_array
```
使用示例:
```python
data = "hello world"
h = HuffmanCoding(data)
compressed_data = h.compress()
print("Compressed data:", compressed_data)
```
输出结果:
```
Compressed data: bytearray(b'\xf3\x22\x8d\x3e\x8b\xd7\x8c\x0e\x8f\x22\x8d')
```
这里得到的是一个bytearray类型的数据,这些数据就是经过哈夫曼编码压缩的结果。
阅读全文
相关推荐
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)