用数据结构与算法计算一元多项式的导数
时间: 2024-06-12 12:08:39 浏览: 93
计算一元多项式的导数可以使用链表作为数据结构来表示多项式,并且使用链表的操作来进行计算。下面是一个示例的实现代码:
```python
# 定义多项式的每一项节点
class PolyNode:
def __init__(self, coef, exp):
self.coef = coef # 系数
self.exp = exp # 指数
self.next = None
# 定义多项式链表
class Polynomial:
def __init__(self):
self.head = None
# 添加一项到多项式中
def add_term(self, coef, exp):
new_node = PolyNode(coef, exp)
if not self.head:
self.head = new_node
else:
current = self.head
while current.next:
current = current.next
current.next = new_node
# 计算多项式的导数
def derivative(self):
current = self.head
while current:
# 计算每一项的导数
current.coef *= current.exp
current.exp -= 1
current = current.next
# 打印多项式
def print_polynomial(self):
current = self.head
while current:
if current.coef != 0:
if current.exp == 0:
print(current.coef)
elif current.exp == 1:
print(f"{current.coef}x", end=" ")
else:
print(f"{current.coef}x^{current.exp}", end=" ")
current = current.next
# 示例使用
p = Polynomial()
p.add_term(3, 2) # 3x^2
p.add_term(2, 1) # 2x^1
p.add_term(5, 0) # 5x^0
p.print_polynomial() # 输出:3x^2 + 2x + 5
print()
p.derivative()
p.print_polynomial() # 输出:6x + 2
```
阅读全文