dataset = 'image/' sampler_loader = torch.utils.data.DataLoader( datasets.ImageFolder(dataset, transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]) ]))) unnormalize = NormalizeInverse(mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = vgg11_bn(pretrained = True) model = model.to(device) fullgrad = FullGrad(model) simple_fullgrad = FullGradSimple(model) save_path = 'result' if os.path.isdir(save_path): os.mkdir(save_path) def compute_saliency_and_save(): for idx, (data, target) in enumerate(sampler_loader): data, target = data.to(device).requires_grad_(), target.to(device) # compute the saliency maps for the input data cam = fullgrad.fullgrad(data) cam_simple = simple_fullgrad.fullgrad(data) for i in range(data.size(0)): filename = save_path + str((idx + 1) * (i+1)) filename_simple = filename + "_simple" image = unnormalize(data[i,:,:,:].cpu()) save_saliency_map(image, cam[i,:,:,:], filename + ".jpg") save_saliency_map(image, cam_simple[i,:,:,:], filename_simple + ".jpg") if __name__ == "__main__": compute_saliency_and_save() 详细解释程序
时间: 2024-04-21 14:23:28 浏览: 167
这段程序是一个计算图像数据的显著性图并保存的过程。下面是对程序的详细解释:
1. 导入必要的库:
```python
import torch
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from models import vgg11_bn
from fullgrad import FullGrad, FullGradSimple
from utils import NormalizeInverse, save_saliency_map
import os
```
2. 定义数据集和数据加载器:
```python
dataset = 'image/'
sampler_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(dataset, transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225])
])))
```
这里使用了`datasets.ImageFolder`来加载数据集,`transform`参数指定了对图像进行的预处理操作,包括将图像大小调整为224x224,转换为张量和归一化。
3. 定义反归一化操作:
```python
unnormalize = NormalizeInverse(mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225])
```
`NormalizeInverse`是一个自定义的类,用于将经过归一化处理的张量反转回原始图像。
4. 检查设备是否支持CUDA并定义模型:
```python
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = vgg11_bn(pretrained = True)
model = model.to(device)
```
这里使用`torch.cuda.is_available()`来检查设备是否支持CUDA,并将模型移动到相应的设备(GPU或CPU)。
5. 定义FullGrad和Simple FullGrad对象:
```python
fullgrad = FullGrad(model)
simple_fullgrad = FullGradSimple(model)
```
`FullGrad`和`FullGradSimple`是自定义的类,用于计算图像数据的显著性图。
6. 定义结果保存路径:
```python
save_path = 'result'
if os.path.isdir(save_path):
os.mkdir(save_path)
```
如果保存路径不存在,则创建一个新的。
7. 定义计算显著性图并保存的函数:
```python
def compute_saliency_and_save():
for idx, (data, target) in enumerate(sampler_loader):
data, target = data.to(device).requires_grad_(), target.to(device)
cam = fullgrad.fullgrad(data)
cam_simple = simple_fullgrad.fullgrad(data)
for i in range(data.size(0)):
filename = save_path + str((idx + 1) * (i+1))
filename_simple = filename + "_simple"
image = unnormalize(data[i,:,:,:].cpu())
save_saliency_map(image, cam[i,:,:,:], filename + ".jpg")
save_saliency_map(image, cam_simple[i,:,:,:], filename_simple + ".jpg")
```
这个函数会遍历数据加载器中的每个数据,将其移动到设备上,并计算其对应的显著性图。然后,将图像、显著性图和保存路径传递给`save_saliency_map`函数以保存显著性图。
8. 主函数:
```python
if __name__ == "__main__":
compute_saliency_and_save()
```
当脚本被直接执行时,会调用`compute_saliency_and_save`函数来计算和保存显著性图。
总结:这段程序用于计算图像数据的显著性图并保存,它使用了预训练的VGG-11模型和FullGrad算法。程序首先加载数据集并进行预处理,然后将模型移动到合适的设备上。接下来,使用FullGrad和Simple FullGrad算法计算每个图像的显著性图,并将结果保存到指定路径下。
阅读全文