错误使用 vl_ubcmatch L1 and L2 must be two dimensional numeric arrays 出错 tiaoshi (line 63) [matches, scores] = vl_ubcmatch(d, kd_tree);
时间: 2024-04-12 11:31:56 浏览: 121
根据错误消息,`vl_ubcmatch`函数要求输入的`d`和`kd_tree`参数必须是二维数值数组。请确保您的特征点描述子`d`和K-D树`kd_tree`满足这一要求。
您可以使用以下代码检查和调整特征点描述子和K-D树的维度:
```matlab
% 确保特征点描述子d是二维数值数组
assert(ismatrix(d) && isnumeric(d), '特征点描述子d必须是二维数值数组');
% 确保K-D树kd_tree是二维数值数组
assert(ismatrix(kd_tree) && isnumeric(kd_tree), 'K-D树kd_tree必须是二维数值数组');
% 使用vl_ubcmatch函数进行特征点匹配
[matches, scores] = vl_ubcmatch(d, kd_tree);
```
在上述代码中,使用`assert`函数对特征点描述子和K-D树的维度进行了验证。如果不满足维度要求,将抛出错误信息。
请确保您的特征点描述子和K-D树符合上述要求,并再次尝试运行代码。如果问题仍然存在,请检查您的代码,确保特征点描述子和K-D树的数据类型和维度是正确的,并且没有其他错误导致此问题。
如果您有任何进一步的疑问,请随时提问。
相关问题
1-dimensional array given. Array must be at least two-dimensional
To convert a 1-dimensional array into a 2-dimensional array, you need to decide on the number of rows and columns for the new array. The total number of elements in the 1-dimensional array should be equal to the product of the number of rows and columns in the 2-dimensional array.
Here's an example code snippet in Python that converts a 1-dimensional array of length n into a 2-dimensional array of size m x n:
```
import numpy as np
# define input 1D array
arr_1d = np.array([1, 2, 3, 4, 5, 6])
# define number of rows and columns for 2D array
m = 2
n = 3
# convert 1D array to 2D array
arr_2d = arr_1d.reshape(m, n)
print(arr_2d)
```
Output:
```
array([[1, 2, 3],
[4, 5, 6]])
```
The `reshape()` function is used to transform the 1D array into a 2D array of size `m` rows and `n` columns. The resulting array will have `m*n` elements, which should match the size of the original 1D array.
阅读全文