Months-in-service Year of Production Date Running Sum of RateCalculated 2 2022 6.79E-05 4 2022 0.000203569 5 2022 0.000339282 7 2022 0.000407138 1 2021 3.84E-05 2 2021 0.000567183 3 2021 0.000794814 4 2021 0.001301464 5 2021 0.001904045 6 2021 0.002157183 7 2021 0.002394334 8 2021 0.002753294 9 2021 0.003121773 10 2021 0.0033909 11 2021 0.003506241 12 2021 0.003528699 13 2021 0.003720933 14 2021 0.003781838 15 2021 0.003820284 16 2021 0.003897178 17 2021 0.00399653 18 2021 0.00411187 19 2021 0.004365009 20 2021 0.004464361 这个列表中用Months-in-service和Running Sum of RateCalculated这两列计算最大似然估计的威布尔分布的参数。Year of Production Date作为分类。给我一段Python代码
时间: 2024-04-11 19:33:21 浏览: 90
STC-USB驱动安装说明.pdf
下面是使用Python进行最大似然估计的威布尔分布参数拟合的示例代码:
```python
import numpy as np
from scipy.optimize import minimize
from scipy.stats import weibull_min
# 数据
months_in_service = np.array([2, 4, 5, 7, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20])
rate_calculated = np.array([6.79e-05, 0.000203569, 0.000339282, 0.000407138, 3.84e-05, 0.000567183,
0.000794814, 0.001301464, 0.001904045, 0.002157183, 0.002394334,
0.002753294, 0.003121773, 0.0033909, 0.003506241, 0.003528699,
0.003720933, 0.003781838, 0.003820284, 0.003897178,
0.00399653, 0.00411187, 0.004365009, 0.004464361])
# 定义威布尔分布的负对数似然函数
def weibull_neg_log_likelihood(params):
shape = params[0]
scale = params[1]
return -np.sum(weibull_min.logpdf(months_in_service, shape, loc=0, scale=scale))
# 初始参数猜测值
initial_guess = [1, 1]
# 最大似然估计
result = minimize(weibull_neg_log_likelihood, initial_guess, method='Nelder-Mead')
shape_estimated = result.x[0]
scale_estimated = result.x[1]
# 输出估计的参数
print("Estimated shape parameter:", shape_estimated)
print("Estimated scale parameter:", scale_estimated)
```
在上面的代码中,我们使用`scipy.optimize.minimize`函数来最小化负对数似然函数,以估计威布尔分布的形状参数和尺度参数。通过给定初始参数猜测值,使用`method='Nelder-Mead'`选择优化算法。最终,我们可以得到估计的形状参数和尺度参数。
请注意,上述代码仅提供了一个示例,实际应用中可能需要根据数据的特点和需求进行适当的修改和调整。另外,为了运行上述代码,需要确保已安装了NumPy和SciPy库。
阅读全文